Search results for: Active Learning
1853 Awareness of Reading Strategies among EFL Learners at Bangkok University
Authors: Nuttanuch Munsakorn
Abstract:
This questionnaire-based study, aimed to measure and compare the awareness of English reading strategies among EFL learners at Bangkok University (BU) classified by their gender, field of study, and English learning experience. Proportional stratified random sampling was employed to formulate a sample of 380 BU students. The data were statistically analyzed in terms of the mean and standard deviation. t-Test analysis was used to find differences in awareness of reading strategies between two groups (-male and female- /-science and social-science students). In addition, one-way analysis of variance (ANOVA) was used to compare reading strategy awareness among BU students with different lengths of English learning experience. The results of this study indicated that the overall awareness of reading strategies of EFL learners at BU was at a high level (ðÑ = 3.60) and that there was no statistically significant difference between males and females, and among students who have different lengths of English learning experience at the significance level of 0.05. However, significant differences among students coming from different fields of study were found at the same level of significance.Keywords: EFL learners, higher education, reading comprehension, reading strategies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39461852 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331851 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning
Authors: XianYu Zhao, JinXu Guo
Abstract:
Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8481850 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491849 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451848 Surfactant-Free O/W-Emulsion as Drug Delivery System
Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk
Abstract:
Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.
Keywords: Emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33201847 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Center of Iran and the Ministry of Cooperatives Labor and Social Welfare that are taken from the labor force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of 6 years in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education, years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.
Keywords: NEET youth, probit, CART, machine learning, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671846 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory
Authors: Kiranmai S.Rai
Abstract:
The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30311845 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551844 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991843 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy
Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz
Abstract:
This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.
Keywords: ESL, instruction, morphemic analysis, vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29171842 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.
Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281841 Investigating Mental Workload of VR Training versus Serious Game Training on Shoot Operation Training
Authors: Ta-Min Hung, Tien-Lung Sun
Abstract:
Thanks to VR technology advanced, there are many researches had used VR technology to develop a training system. Using VR characteristics can simulate many kinds of situations to reach our training-s goal. However, a good training system not only considers real simulation but also considers learner-s learning motivation. So, there are many researches started to conduct game-s features into VR training system. We typically called this is a serious game. It is using game-s features to engage learner-s learning motivation. However, VR or Serious game has another important advantage. That is simulating feature. Using this feature can create any kinds of pressured environments. Because in the real environment may happen any emergent situations. So, increasing the trainees- pressure is more important when they are training. Most pervious researches are investigated serious game-s applications and learning performance. Seldom researches investigated how to increase the learner-s mental workload when they are training. So, in our study, we will introduce a real case study and create two types training environments. Comparing the learner-s mental workload between VR training and serious game.Keywords: Intrinsic Motivation, Mental Workload, VR Training, Serious Game
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601840 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).
Keywords: De La Salle Lipa, Driving What’s Next, social innovation in quality education, DLSL mission - vision, strategic directions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9201839 Different Multimedia Presentation Types and Students' Interpretation Achievement
Authors: Cenk Akbiyik, Gonul Altin Akbiyik
Abstract:
The main purpose of the study was to determine whether students- interpretation achievement differed with the use of various multimedia presentation types. Four groups of students, text only (T), audio only (A), text and audio (TA), text and image (TI), were arranged and they were presented the same story via different types of multimedia presentations. Inference achievement was measured by a critical thinking inference test. Higher mean scores for the TA group compared to the other three groups were found. Also when compared pairwise, interpretation achievement of the TA group differed significantly from scores of the T and TI groups. These differences were interpreted with the increased cognitive load. Increased cognitive load for the TA group may have invited students to put more effort into comprehending the text, thus resulting in better test scores. Findings of the study can be seen as a sign of the importance of learning situations and learning outcomes in multimedia-supported learning environments and may have practical benefits for instructional designers.
Keywords: Multimedia, cognitive multimedia, dual coding, cognitive load, critical thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34591838 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131837 Using Mixed Methods in Studying Classroom Social Network Dynamics
Authors: Nashrawan N. Taha, Andrew M. Cox
Abstract:
In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.
Keywords: Mixed Methods, Social Network Analysis, multi-cultural learning, Social Network Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131836 International E-Learning for Assuring Ergonomic Working Conditions of Orthopaedic Surgeons: First Research Outcomes from Train4OrthoMIS
Authors: J. Bartnicka, J. A. Piedrabuena, R. Portilla, L. Moyano - Cuevas, J. B. Pagador, P. Augat, J. Tokarczyk, F. M. Sánchez Margallo
Abstract:
Orthopaedic surgeries are characterized by a high degree of complexity. This is reflected by four main groups of resources: 1) surgical team which is consisted of people with different competencies, educational backgrounds and positions; 2) information and knowledge about medical and technical aspects of surgery; 3) medical equipment including surgical tools and materials; 4) space infrastructure which is important from an operating room layout point of view. These all components must be integrated and build a homogeneous organism for achieving an efficient and ergonomically correct surgical workflow. Taking this as a background, there was formulated a concept of international project, called “Online Vocational Training course on ergonomics for orthopaedic Minimally Invasive” (Train4OrthoMIS), which aim is to develop an e-learning tool available in 4 languages (English, Spanish, Polish and German). In the article, there is presented the first project research outcomes focused on three aspects: 1) ergonomic needs of surgeons who work in hospitals around different European countries, 2) the concept of structure of e-learning course, 3) the definition of tools and methods for knowledge assessment adjusted to users’ expectation. The methodology was based on the expert panels and two types of surveys: 1) on training needs, 2) on evaluation and self-assessment preferences. The major findings of the study allowed describing the subjects of four training modules and learning sessions. According to peoples’ opinion there were defined most expected test methods which are single choice test and right after quizzes: “True or False” and “Link elements” The first project outcomes confirmed the necessity of creating a universal training tool for orthopaedic surgeons regardless of the country in which they work. Because of limited time that surgeons have, the e-learning course should be strictly adjusted to their expectation in order to be useful.Keywords: International e-learning, ergonomics, orthopaedic surgery, Train4OrthoMIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481835 The Importance of Student Feedback in Development of Virtual Engineering Laboratories
Authors: A. A. Altalbe, N. W Bergmann
Abstract:
There has been significant recent interest in on-line learning, as well as considerable work on developing technologies for virtual laboratories for engineering students. After reviewing the state-of-the-art of virtual laboratories, this paper steps back from the technology issues to look in more detail at the pedagogical issues surrounding virtual laboratories, and examines the role of gathering student feedback in the development of such laboratories. The main contribution of the paper is a set of student surveys before and after a prototype deployment of a simulation laboratory tool, and the resulting analysis which leads to some tentative guidelines for the design of virtual engineering laboratories.
Keywords: Engineering education, electrical engineering, e-learning, virtual laboratories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9331834 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.
Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601833 Senior Citizens- Satisfaction on Continuing Education
Authors: Cheng Fang Hsu, Shinn-Jong Lin
Abstract:
This research is to explore the satisfaction for senior citizens on continuing education in Taiwan. The purpose of this research aims at the difference on teacher-s teaching, personal relationship, learning result, materials and environment. Through different sexual and living area as the background variables, a questionnaire is adopted as the methodology in this research. Three results are found in this research. In overall, senior citizens taking continuing education put the most important attention on personal relationship but materials and leaning environment put the least. There is a significant difference on personal relationship, teacher-s teaching and research result between different sexes. Female senior citizens attach more importance to teacher-s teaching and learning results but male senior citizens value on personal relationship. Another significant difference is shown on teacher-s teaching and personal relationship because of senior citizens living area. Urban senior citizens put importance on personal relationship and rural senior citizens respect teacher-s teaching more.Keywords: Learning satisfaction, continuing education, seniorcitizens.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14201832 Explorative Data Mining of Constructivist Learning Experiences and Activities with Multiple Dimensions
Authors: Patrick Wessa, Bart Baesens
Abstract:
This paper discusses the use of explorative data mining tools that allow the educator to explore new relationships between reported learning experiences and actual activities, even if there are multiple dimensions with a large number of measured items. The underlying technology is based on the so-called Compendium Platform for Reproducible Computing (http://www.freestatistics.org) which was built on top the computational R Framework (http://www.wessa.net).Keywords: Reproducible computing, data mining, explorative data analysis, compendium technology, computer assisted education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581831 Students’ Perception and Patterns of Listening Behavior in an Online Forum Discussion
Authors: K. L. Wong, I. N. Umar
Abstract:
Online forum is part of a Learning Management System (LMS) environment in which students share their opinions. This study attempts to investigate the perceptions of students towards online forum and their patterns of listening behavior during the forum interaction. The students’ perceptions were measured using a questionnaire, in which seven dimensions were used involving online experience, benefits of forum participation, cost of participation, perceived ease of use, usefulness, attitude, and intention. Meanwhile, their patterns of listening behaviors were obtained using the log file extracted from the LMS. A total of 25 postgraduate students undertaking a course were involved in this study, and their activities in the forum session were recorded by the LMS and used as a log file. The results from the questionnaire analysis indicated that the students perceived that the forum is easy to use, useful, and bring benefits to them. Also, they showed positive attitude towards online forum, and they have the intention to use it in future. Based on the log data, the participants were also divided into six clusters of listening behavior, in which they are different in terms of temporality, breadth, depth and speaking level. The findings were compared to previous clusters grouping and future recommendations are also discussed.
Keywords: e-learning, learning management system, listening behavior, online forum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24231830 Assessment Methods for Surgical Skill
Authors: Siti Nor Zawani Ahmmad, Eileen Su Lee Ming, Yeong Che Fai, Fauzan Khairi bin Che Harun
Abstract:
The increasingly sophisticated technologies have now been able to provide assistance for surgeons to improve surgical performance through various training programs. Equally important to learning skills is the assessment method as it determines the learning and technical proficiency of a trainee. A consistent and rigorous assessment system will ensure that trainees acquire the specific level of competency prior to certification. This paper reviews the methods currently in use for assessment of surgical skill and some modern techniques using computer-based measurements and virtual reality systems for more quantitative measurementsKeywords: assessment, surgical skill, checklist, global rating, virtual reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24351829 Face Localization and Recognition in Varied Expressions and Illumination
Authors: Hui-Yu Huang, Shih-Hang Hsu
Abstract:
In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.
Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971828 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.
Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551827 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621826 Information Dissemination System (IDS) Based E-Learning in Agricultural of Iran (Perception of Iranian Extension Agents)
Authors: A. R. Ommani, M. Chizari
Abstract:
The purpose of the study reported here was designing Information Dissemination System (IDS) based E-learning in agricultural of Iran. A questionnaire was developed to designing Information Dissemination System. The questionnaire was distributed to 96 extension agents who work for Management of Extension and Farming System of Khuzestan province of Iran. Data collected were analyzed using the Statistical Package for the Social Sciences (SPSS). Appropriate statistical procedures for description (frequencies, percent, means, and standard deviations) were used. In this study there was a significant relationship between the age , IT skill and knowledge, years of extension work, the extend of information seeking motivation, level of job satisfaction and level of education with use of information technology by extension agent. According to extension agents five factors were ranked respectively as five top essential items to designing Information Dissemination System (IDS) based E-learning in agricultural of Iran. These factors include: 1) Establish communication between farmers, coordinators (extension agents), agricultural experts, research centers, and community by information technology. 2) The communication between all should be mutual. 3) The information must be based farmers need. 4) Internet used as a facility to transfer the advanced agricultural information to the farming community. 5) Farmers can be illiterate and speak a local and they are not expected to use the system directly. Knowledge produced by the agricultural scientist must be transformed in to computer understandable presentation. To designing Information Dissemination System, electronic communication, in the agricultural society and rural areas must be developed. This communication must be mutual between all factors.
Keywords: E-learning, information dissemination system, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23951825 Modality and Redundancy Effects on Music Theory Learning Among Pupils of Different Anxiety Levels
Authors: Soon Fook Fong, Aldalalah, M. Osamah
Abstract:
The purpose of this study was to investigate effects of modality and redundancy principles on music theory learning among pupils of different anxiety levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was the anxiety level, while the dependent variable was the post test score. The study sample consisted of 405 third-grade pupils. Descriptive and inferential statistics were conducted to analyze the collected data. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variable. The findings of this study showed that medium anxiety pupils performed significantly better than low and high anxiety pupils in all the three treatment modes. The AI mode was found to help pupils with high anxiety significantly more than the TI and AIT modes.Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441824 Mobile Learning in Developing Countries: A Synthesis of the Past to Define the Future
Authors: Harriet Koshie Lamptey, Richard Boateng
Abstract:
Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. Steady progress in wireless technologies and the portability of communication devices continue to broaden the scope and use of mobiles. With the convergence of Web functionality onto mobile platforms and the affordability and availability of mobile technology, m-learning has the potential of being the next prevalent channel of education in both formal and informal settings. There is substantive literature on developed countries but the state in developing countries (DCs) however appears vague. This paper is a synthesis of extant literature on mobile learning in DCs. The research interest is based on the fact that in DCs, mobile communication and internet connectivity are popular. However, its use in education is under explored. There are some reviews on the state, conceptualizations, trends and teacher education, but to the authors’ knowledge, no study has focused on mobile learning adoption and integration issues. This study examines issues and gaps associated with its adoption and integration in DCs higher education institutions. A qualitative build-up of literature was conducted using articles pooled from electronic databases (Google Scholar and ERIC). To enable criteria for inclusion and incorporate diverse study perspectives, search terms used were m-learning, DCs, higher education institutions, challenges, benefits, impact, gaps and issues. The synthesis revealed that though mobile technology has diffused globally, its pedagogical pursuit in DCs remains quite low. The absence of a mobile Web and the difficulty of resource conversion into mobile format due to lack of funding and technical competence is a stumbling block. Again, the lack of established design and implementation rules to guide the development of m-learning platforms in DCs is a hindrance. The absence of access restrictions on devices poses security threats to institutional systems. Negative perceptions that devices are taking over faculty roles lead to resistance in some situations. Resistance to change can be a hindrance to the acceptance and success of new systems. Lack of interest for m-learning is also attributed to lower technological literacy levels of the underprivileged masses. Scholarly works on m-learning in DCs is yet to mature. Most technological innovations are handed down from developed countries, and this constantly creates a lag for DCs. Lack of theoretical grounding was also identified which reduces the objectivity of study reports. The socio-cultural terrain of DCs results in societies with different views and needs that have been identified as a hindrance to research. Institutional commitment decisions, adequate funding for the necessary infrastructural development as well as multiple stakeholder participation is important for project success. Evidence suggests that while adoption decisions are readily made, successful integration of the concept for its full benefits to be realized is often neglected. Recommendations to findings were made to provide possible remedies to identified issues.Keywords: Developing countries, higher education institutions, mobile learning, literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044