Search results for: learning objects
1436 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem
Authors: Mohammad Reza Karami Nejad
Abstract:
A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.
Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381435 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: Big data, building-value analysis, machine learning, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11651434 Leading, Teaching and Learning “in the Middle”: Experiences, Beliefs, and Values of Instructional Leaders, Teachers, and Students in Finland, Germany, and Canada
Authors: Brandy Yee, Dianne Yee
Abstract:
Through the exploration of the lived experiences, beliefs and values of instructional leaders, teachers and students in Finland, Germany and Canada, we investigated the factors which contribute to developmentally responsive, intellectually engaging middle-level learning environments for early adolescents. Student-centred leadership dimensions, effective instructional practices and student agency were examined through the lens of current policy and research on middle-level learning environments emerging from the Canadian province of Manitoba. Consideration of these three research perspectives in the context of early adolescent learning, placed against an international backdrop, provided a previously undocumented perspective on leading, teaching and learning in the middle years. Aligning with a social constructivist, qualitative research paradigm, the study incorporated collective case study methodology, along with constructivist grounded theory methods of data analysis. Data were collected through semi-structured individual and focus group interviews and document review, as well as direct and participant observation. Three case study narratives were developed to share the rich stories of study participants, who had been selected using maximum variation and intensity sampling techniques. Interview transcript data were coded using processes from constructivist grounded theory. A cross-case analysis yielded a conceptual framework highlighting key factors that were found to be significant in the establishment of developmentally responsive, intellectually engaging middle-level learning environments. Seven core categories emerged from the cross-case analysis as common to all three countries. Within the visual conceptual framework (which depicts the interconnected nature of leading, teaching and learning in middle-level learning environments), these seven core categories were grouped into Essential Factors (student agency, voice and choice), Contextual Factors (instructional practices; school culture; engaging families and the community), Synergistic Factors (instructional leadership) and Cornerstone Factors (education as a fundamental cultural value; preservice, in-service and ongoing teacher development). In addition, sub-factors emerged from recurring codes in the data and identified specific characteristics and actions found in developmentally responsive, intellectually engaging middle-level learning environments. Although this study focused on 12 schools in Finland, Germany and Canada, it informs the practice of educators working with early adolescent learners in middle-level learning environments internationally. The authentic voices of early adolescent learners are the most important resource educators have to gauge if they are creating effective learning environments for their students. Ongoing professional dialogue and learning is essential to ensure teachers are supported in their work and develop the pedagogical practices needed to meet the needs of early adolescent learners. It is critical to balance consistency, coherence and dependability in the school environment with the necessary flexibility in order to support the unique learning needs of early adolescents. Educators must intentionally create a school culture that unites teachers, students and their families in support of a common purpose, as well as nurture positive relationships between the school and its community. A large, urban school district in Canada has implemented a school cohort-based model to begin to bring developmentally responsive, intellectually engaging middle-level learning environments to scale.
Keywords: Developmentally responsive learning environments, early adolescents, middle-level learning, middle years, instructional leadership, instructional practices, intellectually engaging learning environments, leadership dimensions, student agency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931433 Effects of Human Factors on Workforce Scheduling
Authors: M. Othman, N. Bhuiyan, G. J. Gouw
Abstract:
In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.Keywords: Human Factors, Learning Curves, Workers' Differences, Workforce Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18631432 Royal Mound “Baygetobe“ from the Burial Ground Shilikty
Authors: Abdesh Toleubayev, Rinat Zhumatayev, Kulzhazira Toleubayeva
Abstract:
Mounds are one of the most valuable sources of information on various aspects of life, household skills, rituals and beliefs of the ancient peoples of Kazakhstan. Moreover, the objects associated with the cult of the burial of the dead are the most informative, and often the only source of knowledge about past eras. The present study is devoted to some results of the excavations carried out on the mound "Baygetobe" of Shilikti burial ground. The purpose of the work is associated with certain categories of grave goods and reading "Fine Text" of Shilikti graves, whose structure is the same for burials of nobles and ordinary graves. The safety of a royal burial mounds, the integrity and completeness of the source are of particular value for studying.Keywords: Animal style, barrow, Baygetobe, dromos, Shilikty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24491431 A Proposed Framework for Visualization to Teach Computer Science
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14571430 Approximation Incremental Training Algorithm Based on a Changeable Training Set
Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei
Abstract:
The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841429 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311428 Teachers- Perceptions on the Use of E-Books as Textbooks in the Classroom
Authors: Abd Mutalib Embong, Azelin M Noor, Razol Mahari M Ali, Zulqarnain Abu Bakar, Abdur- Rahman Mohamed Amin
Abstract:
At the time where electronic books, or e-Books, offer students a fun way of learning , teachers who are used to the paper text books may find it as a new challenge to use it as a part of learning process. Precisely, there are various types of e-Books available to suit students- knowledge, characteristics, abilities, and interests. The paper discusses teachers- perceptions on the use of ebooks as a paper text book in the classroom. A survey was conducted on 72 teachers who use e-books as textbooks. It was discovered that a majority of these teachers had good perceptions on the use of ebooks. However, they had little problems using the devices. It can be overcome with some strategies and a suggested framework.Keywords: Classroom, E-books, perception, teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57491427 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111426 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: Computer vision, deep learning, object detection, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8301425 Review of Studies on Agility in Knowledge Management
Authors: Ferdi Sönmez, Başak Buluz
Abstract:
Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.
Keywords: Knowledge management, agility requirements, agility in knowledge management, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581424 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25061423 The Impacts of Off-Campus Students on Local Neighbourhood in Malaysia
Authors: Dasimah Bt Omar, Faizul Abdullah, Fatimah Yusof, Hazlina Hamdan, Naasah Nasrudin, Ishak Che Abullah
Abstract:
The impacts of near-campus student housing, or offcampus students accommodation cannot be ignored by the universities and as well as the community officials. Numerous scholarly studies, have highlighted the substantial economic impacts either; direct, indirect or induced, and cumulatively the roles of the universities have significantly contributed to the local economies. The issue of the impacts of off-campus student rental housing on neighbourhoods is one that has been of long-standing but increasing concern in Malaysia. Statistically, in Malaysia, there was approximately a total of 1.2 - 1.5 million students in 2009. By the year 2015, it is expected that 50 per cent of 18 to 30 year olds active population should gain access to university education, amounting to 120,000 yearly. The objectives of the research are to assess the impacts off-campus students on the local neighbourhood and specifically to obtain information on the living and learning conditions of off-campus students of Universiti Teknologi MARA Shah Alam, Malaysia. It is also to isolate those factors that may impede the successful learning so that priority can be given to them in subsequent policy implementations and actions by government and the higher education institutions.Keywords: off-campus students, neighbourhood, impacts, living and learning conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44141422 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.
Keywords: Science education, interdisciplinary learning, nuclear science; scientific literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8201421 Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion
Authors: Bing-Fei Wu, Yen-Lin Chen, Chung-Cheng Chiu
Abstract:
In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1
Keywords: image segmentation, multilevel thresholding, clustering, discriminant analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371420 Review Risk and Threats Due to Dam Break
Authors: A.Roshandel, N.Hedayat, H.kiamanesh
Abstract:
The one of most important objects in implementation of damage analysis observations is manner of dam break wave propagation. In this paper velocity and wave height due dam break in with and without tailwater states for appointment hazardous lands and flood radius are investigate. In order to modeling above phenomenon finite volume method of Roe type for solving shallow water equations is used. Results indicated that in the dry bed state risk radius due to dam break is too high. While in the wet bed risk radius has a less wide. Therefore in the first state constructions and storage facilities are encountered with destruction risk. Further velocity due to dam break in the second state is more comparing to the first state. Hence erosion and scour the river bed in the dry bed is too more compare to the wet bed.Keywords: Dam break, finite volume method, tailwater, risk radius, scour
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211419 Improved Skin Detection Using Colour Space and Texture
Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina
Abstract:
Skin detection is an important task for computer vision systems. A good method of skin detection means a good and successful result of the system. The colour is a good descriptor for image segmentation and classification; it allows detecting skin colour in the images. The lighting changes and the objects that have a colour similar than skin colour make the operation of skin detection difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr skin model.
Keywords: Skin detection, YCbCr, GLCM, Texture, Human skin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24491418 Transferring Route Plan over Time
Authors: Barıs Kocer, Ahmet Arslan
Abstract:
Travelling salesman problem (TSP) is a combinational optimization problem and solution approaches have been applied many real world problems. Pure TSP assumes the cities to visit are fixed in time and thus solutions are created to find shortest path according to these point. But some of the points are canceled to visit in time. If the problem is not time crucial it is not important to determine new routing plan but if the points are changing rapidly and time is necessary do decide a new route plan a new approach should be applied in such cases. We developed a route plan transfer method based on transfer learning and we achieved high performance against determining a new model from scratch in every change.Keywords: genetic algorithms, transfer learning, travellingsalesman problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711417 Promoting Non-Formal Learning Mobility in the Field of Youth
Authors: Juha Kettunen
Abstract:
The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.
Keywords: Non-formal learning, youth work, social inclusion, innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8271416 Lessons Learned from Observing User Behavior through Repeated Usability Evaluations
Authors: Hanmin Jung, Mikyoung Lee, Won-kyung Sung
Abstract:
Academic research information service is a must for surveying previous studies in research and development process. OntoFrame is an academic research information service under Semantic Web framework different from simple keyword-based services such as CiteSeer and Google Scholar. The first purpose of this study is for revealing user behavior in their surveys, the objects of using academic research information services, and their needs. The second is for applying lessons learned from the results to OntoFrame.
Keywords: User Behavior, Usability Evaluation, OntoFrame, CiteSeer, Google Scholar, Academic Research Information Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311415 A Technique for Execution of Written Values on Shared Variables
Authors: Parvinder S. Sandhu, Vijay K. Banga, Prateek Gupta, Amit Verma
Abstract:
The current paper conceptualizes the technique of release consistency indispensable with the concept of synchronization that is user-defined. Programming model concreted with object and class is illustrated and demonstrated. The essence of the paper is phases, events and parallel computing execution .The technique by which the values are visible on shared variables is implemented. The second part of the paper consist of user defined high level synchronization primitives implementation and system architecture with memory protocols. There is a proposition of techniques which are core in deciding the validating and invalidating a stall page .Keywords: synchronization objects, barrier, phases and events, shared memory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11871414 Query Algebra for Semistuctured Data
Authors: Ei Ei Myat, Ni Lar Thein
Abstract:
With the tremendous growth of World Wide Web (WWW) data, there is an emerging need for effective information retrieval at the document level. Several query languages such as XML-QL, XPath, XQL, Quilt and XQuery are proposed in recent years to provide faster way of querying XML data, but they still lack of generality and efficiency. Our approach towards evolving a framework for querying semistructured documents is based on formal query algebra. Two elements are introduced in the proposed framework: first, a generic and flexible data model for logical representation of semistructured data and second, a set of operators for the manipulation of objects defined in the data model. In additional to accommodating several peculiarities of semistructured data, our model offers novel features such as bidirectional paths for navigational querying and partitions for data transformation that are not available in other proposals.Keywords: Algebra, Semistructured data, Query Algebra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761413 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represent another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.
Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8541412 Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome
Authors: Malathi Balakrishnan, Shabeshan Rengasamy, Mohd Salleh Aman
Abstract:
The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.Keywords: Constructivism, learning outcome, tactical understanding, and Teaching Game for Understanding (TGfU)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46041411 Enhanced Frame-based Video Coding to Support Content-based Functionalities
Authors: Prabhudev Hosur, Rolando Carrasco
Abstract:
This paper presents the enhanced frame-based video coding scheme. The input source video to the enhanced frame-based video encoder consists of a rectangular-size video and shapes of arbitrarily-shaped objects on video frames. The rectangular frame texture is encoded by the conventional frame-based coding technique and the video object-s shape is encoded using the contour-based vertex coding. It is possible to achieve several useful content-based functionalities by utilizing the shape information in the bitstream at the cost of a very small overhead to the bitrate.
Keywords: Video coding, content-based, hyper video, interactivity, shape coding, polygon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16631410 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8981409 Privacy of RFID Systems: Security of Personal Data for End-Users
Authors: Firoz Khan
Abstract:
Privacy of RFID systems is receiving increasing attention in the RFID community. RFID privacy is important as the RFID tags will be attached to all kinds of products and physical objects including people. The possible abuse or excessive use of RFID tracking capability by malicious users can lead to potential privacy violations. In this paper, we will discuss how the different industries use RFID and the potential privacy and security issues while RFID is implemented in these industries. Although RFID technology offers interesting services to customer and retailers, it could also endanger the privacy of end-users. Personal data can be leaked if a protection mechanism is not deployed in the RFID systems. The paper summarizes many different solutions for implementing privacy and security while deploying RFID systems.Keywords: RFID, privacy, security, encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9751408 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9811407 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138