Search results for: Semantic data integration
7151 Identification of Risks Associated with Process Automation Systems
Authors: J. K. Visser, H. T. Malan
Abstract:
A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.
Keywords: Distributed control system, identification of risks, information technology, process automation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9657150 A Conceptual Query-Driven Design Framework for Data Warehouse
Authors: Resmi Nair, Campbell Wilson, Bala Srinivasan
Abstract:
Data warehouse is a dedicated database used for querying and reporting. Queries in this environment show special characteristics such as multidimensionality and aggregation. Exploiting the nature of queries, in this paper we propose a query driven design framework. The proposed framework is general and allows a designer to generate a schema based on a set of queries.Keywords: Conceptual schema, data warehouse, queries, requirements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20067149 A Prototype of Augmented Reality for Visualising Large Sensors’ Datasets
Authors: Folorunso Olufemi Ayinde, Mohd Shahrizal Sunar, Sarudin Kari, Dzulkifli Mohamad
Abstract:
In this paper we discuss the development of an Augmented Reality (AR) - based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations. Therefore we have developed a data model to effectively manage such data and enhance the computational support needed for the effective data explorations. A challenge of this approach is to reduce the data inefficiency powered by the disparate, repeated, inconsistent and missing attributes of most available sensors datasets. To handle this challenge, this paper aim to develop an AR-based scientific visualization interface which automatically identifies, localise and visualizes all necessary data relevant to a particularly selected region of interest (ROI) along the virtual pipeline network. Necessary system architectural supports needed as well as the interface requirements for such visualizations are also discussed in this paper.
Keywords: Sensor Leakages Datasets, Augmented Reality, Sensor Data-Model, Scientific Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16807148 Personalized Applications for Advanced Healthcare through AI-ML and Blockchain
Authors: Anuja Vyas, Aikel Indurkhya, Hari Krishna Garg
Abstract:
Nearly 25 years have passed since the landmark publication of the Human Genome Project, yet scientists have only begun to scratch the surface of its potential benefits. To bridge this gap, a personalized genomic application has been envisioned as a transformative tool accessible to people worldwide. This innovative solution proposes an integrated framework combining blockchain technology, genome-specific applications, and data compression techniques, ensuring operations to be swift, secure, transparent, and space-efficient. The software harnesses advanced Artificial Intelligence and Machine Learning methodologies, such as neural networks, evaluation matrices, fuzzy logic, and expert systems, to analyze individual genomic data. It generates personalized reports by comparing a user's genome with a reference genome, highlighting significant differences. Blockchain technology, with its inherent security, encryption, and immutability features, is leveraged for robust data transport and storage. In addition, a 'Data Abbreviation' technique ensures that genetic data and reports occupy minimal space. This integrated approach promises to be a significant leap forward, potentially transforming human health and well-being on a global scale.
Keywords: Artificial intelligence in genomics, blockchain technology, data abbreviation, data compression, data security in genomics, data storage, expert systems, fuzzy logic, genome applications, genomic data analysis, human genome project, neural networks, personalized genomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417147 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM Card, mobile financial services, cryptography, secure data storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20657146 A Soft Systems Methodology Perspective on Data Warehousing Education Improvement
Abstract:
This paper demonstrates how the soft systems methodology can be used to improve the delivery of a module in data warehousing for fourth year information technology students. Graduates in information technology needs to have academic skills but also needs to have good practical skills to meet the skills requirements of the information technology industry. In developing and improving current data warehousing education modules one has to find a balance in meeting the expectations of various role players such as the students themselves, industry and academia. The soft systems methodology, developed by Peter Checkland, provides a methodology for facilitating problem understanding from different world views. In this paper it is demonstrated how the soft systems methodology can be used to plan the improvement of data warehousing education for fourth year information technology students.Keywords: Data warehousing, education, soft systems methodology, stakeholders, systems thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17077145 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117144 A Compact Wearable Slot Antenna for LTE and WLAN Applications
Authors: Haider K. Raad
Abstract:
In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.Keywords: Wearable Electronics, Slot Antenna, LTE, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11937143 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11377142 Content Based Sampling over Transactional Data Streams
Authors: Mansour Tarafdar, Mohammad Saniee Abade
Abstract:
This paper investigates the problem of sampling from transactional data streams. We introduce CFISDS as a content based sampling algorithm that works on a landmark window model of data streams and preserve more informed sample in sample space. This algorithm that work based on closed frequent itemset mining tasks, first initiate a concept lattice using initial data, then update lattice structure using an incremental mechanism.Incremental mechanism insert, update and delete nodes in/from concept lattice in batch manner. Presented algorithm extracts the final samples on demand of user. Experimental results show the accuracy of CFISDS on synthetic and real datasets, despite on CFISDS algorithm is not faster than exist sampling algorithms such as Z and DSS.
Keywords: Sampling, data streams, closed frequent item set mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17097141 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30777140 The Relationship between the Energy of Gravitational Field and the Representative Pseudotensor
Authors: R. I. Khrapko
Abstract:
As is known, the role of the energy-momentum pseudotensors of the gravitational field is to extend the conservation law to the gravitational interaction by taking into account the energy and momentum of the gravitational field. We calculated the contribution of the Einstein pseudotensor to the total mass of a stationary material body and its gravitational field. It turned out that this contribution is positive, despite the fact that the mass-energy of a stationary gravitational field is negative. We concluded that the pseudotensor incorrectly describes the energy of the gravitational field. Nevertheless, this pseudotensor has been used in a large number of scientific works for 100 years. We explain this by the fact that the covariant component of the pseudotensor was regarded as the mass-energy. Besides, we prove the advantage of the covariant energy-momentum conservation law for matter in the Minkowski space-time.
Keywords: Conservation law, covariant integration, gravitation field, isolated system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7487139 Compression of Semistructured Documents
Authors: Leo Galambos, Jan Lansky, Katsiaryna Chernik
Abstract:
EGOTHOR is a search engine that indexes the Web and allows us to search the Web documents. Its hit list contains URL and title of the hits, and also some snippet which tries to shortly show a match. The snippet can be almost always assembled by an algorithm that has a full knowledge of the original document (mostly HTML page). It implies that the search engine is required to store the full text of the documents as a part of the index. Such a requirement leads us to pick up an appropriate compression algorithm which would reduce the space demand. One of the solutions could be to use common compression methods, for instance gzip or bzip2, but it might be preferable if we develop a new method which would take advantage of the document structure, or rather, the textual character of the documents. There already exist a special compression text algorithms and methods for a compression of XML documents. The aim of this paper is an integration of the two approaches to achieve an optimal level of the compression ratioKeywords: Compression, search engine, HTML, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15777138 Knowledge Management and e-Learning –An Agent-Based Approach
Authors: Teodora Bakardjieva, Galya Gercheva
Abstract:
In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21667137 Real-Time Implementation of STANAG 4539 High-Speed HF Modem
Authors: S. Saraç, F. Kara, C.Vural
Abstract:
High-frequency (HF) communications have been used by military organizations for more than 90 years. The opportunity of very long range communications without the need for advanced equipment makes HF a convenient and inexpensive alternative of satellite communications. Besides the advantages, voice and data transmission over HF is a challenging task, because the HF channel generally suffers from Doppler shift and spread, multi-path, cochannel interference, and many other sources of noise. In constructing an HF data modem, all these effects must be taken into account. STANAG 4539 is a NATO standard for high-speed data transmission over HF. It allows data rates up to 12800 bps over an HF channel of 3 kHz. In this work, an efficient implementation of STANAG 4539 on a single Texas Instruments- TMS320C6747 DSP chip is described. The state-of-the-art algorithms used in the receiver and the efficiency of the implementation enables real-time high-speed data / digitized voice transmission over poor HF channels.
Keywords: High frequency, modem, STANAG 4539.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53417136 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China
Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng
Abstract:
Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.
Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8137135 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: Data envelopment analysis, super efficiency, financial ratios, BCC model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8767134 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17377133 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.
Keywords: Educational data visualization, high-level petri nets, instructional design, learning analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8487132 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10027131 Doping of Conveyor Belt Materials with Nanostructured Fillers to Adapt Innovative Performance Characteristics
Authors: S. Falkenberg, L. Overmeyer
Abstract:
The “conveyor belt" as a product represents a complex high performance component with a wide range of different applications. Further development of these highly complex components demands an integration of new technologies and new enhanced materials. In this context nanostructured fillers appear to have a more promising effect on the performance of the conveyor belt composite than conventional micro-scaled fillers. Within the project “DotTrans" nanostructured fillers, for example silicon dioxide, are used to optimize performance parameters of conveyor belt systems. The objective of the project includes operating parameters like energy consumption or friction characteristics as well as adaptive parameters like cut or wear resistance.Keywords: Conveyor belt, nanostructured fillers, wear resistance, friction characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21467130 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7607129 A Technical Perspective on Roadway Safety in Eastern Province: Data Evaluation and Spatial Analysis
Authors: Muhammad Farhan, Sayed Faruque, Amr Mohammed, Sami Osman, Omar Al-Jabari, Abdul Almojil
Abstract:
Saudi Arabia in recent years has seen drastic increase in traffic related crashes. With population of over 29 million, Saudi Arabia is considered as a fast growing and emerging economy. The rapid population increase and economic growth has resulted in rapid expansion of transportation infrastructure, which has led to increase in road crashes. Saudi Ministry of Interior reported more than 7,000 people killed and 68,000 injured in 2011 ranking Saudi Arabia to be one of the worst worldwide in traffic safety. The traffic safety issues in the country also result in distress to road users and cause and economic loss exceeding 3.7 billion Euros annually. Keeping this in view, the researchers in Saudi Arabia are investigating ways to improve traffic safety conditions in the country. This paper presents a multilevel approach to collect traffic safety related data required to do traffic safety studies in the region. Two highway corridors including King Fahd Highway 39 kilometre and Gulf Cooperation Council Highway 42 kilometre long connecting the cities of Dammam and Khobar were selected as a study area. Traffic data collected included traffic counts, crash data, travel time data, and speed data. The collected data was analysed using geographic information system to evaluate any correlation. Further research is needed to investigate the effectiveness of traffic safety related data when collected in a concerted effort.
Keywords: Crash Data, Data Collection, Traffic Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23527128 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13957127 The Impact of Seasonality on Rainfall Patterns: A Case Study
Authors: Priti Kaushik, Randhir Singh Baghel, Somil Khandelwal
Abstract:
This study uses whole-year data from Rajasthan, India, at the meteorological divisional level to analyze and evaluate long-term spatiotemporal trends in rainfall and looked at the data from each of the thirteen tehsils in the Jaipur district to see how the rainfall pattern has altered over the last 10 years. Data on daily rainfall from the Indian Meteorological Department (IMD) in Jaipur are available for the years 2012 through 2021. We mainly focus on comparing data of tehsil wise in the Jaipur district, Rajasthan, India. Also analyzed is the fact that July and August always see higher rainfall than any other month. Rainfall usually starts to rise around week 25th and peaks in weeks 32nd or 33rd. They showed that on several occasions, 2017 saw the least amount of rainfall during a long span of 10 years. The greatest rain fell between 2012 and 2021 in 2013, 2019, and 2020.
Keywords: Data analysis, extreme events, rainfall, descriptive case studies, precipitation temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917126 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.
Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35187125 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8297124 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18037123 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12777122 Integration of Resistive Switching Memory Cell with Vertical Nanowire Transistor
Authors: Xiang Li, Zhixian Chen, Zheng Fang, Aashit Kamath, Xinpeng Wang, Navab Singh, Guo-Qiang Lo, Dim-Lee Kwong
Abstract:
We integrate TiN/Ni/HfO2/Si RRAM cell with a vertical gate-all-around (GAA) nanowire transistor to achieve compact 4F2 footprint in a 1T1R configuration. The tip of the Si nanowire (source of the transistor) serves as bottom electrode of the memory cell. Fabricated devices with nanowire diameter ~ 50nm demonstrate ultra-low current/power switching; unipolar switching with 10μA/30μW SET and 20μA/30μW RESET and bipolar switching with 20nA/85nW SET and 0.2nA/0.7nW RESET. Further, the switching current is found to scale with nanowire diameter making the architecture promising for future scaling.Keywords: RRAM, 1T1R, gate-all-around FET, nanowire FET, vertical MOSFETs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148