Search results for: simulation framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4799

Search results for: simulation framework

3839 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior

Authors: Shinji Kajiwara

Abstract:

The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.

Keywords: Hydraulics, Pipe Flow, Numerical Simulation, Flow Visualization, Check ball, L-shaped Pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
3838 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry

Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia

Abstract:

Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.

Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
3837 Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

Authors: Jianqiao. Yu, Jianbo. Wang, Xinzhen. He

Abstract:

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Keywords: quasi-linear model, simulation, state transformation approach, the ADMIRE model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
3836 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: Aircraft aerodynamic model, Microsoft flight simulator, MQ-1 Predator, total least squares estimation, piloting the aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
3835 The Experimental and Numerical Analysis of a Lightpipe using a Simulation Software

Authors: M. Paroncini, F. Corvaro, G. Nardini, S. Pistolesi

Abstract:

A lightpipe is an about 99 percent specular reflective mirror pipe or duct that is used for the transmission of the daylight from the outside into a building. The lightpipes are usually used in the daylighting buildings, in the residential, industrial and commercial sectors. This paper is about the performances of a lightpipe installed in a laboratory (3 m x 2.6 m x 3 m) without windows. The aim is to analyse the luminous intensity distribution for several sky/sun conditions. The lightpipe was monitored during the year 2006. The lightpipe is 1 m long and the diameter of the top collector and of the internal diffuser device is 0.25 m. In the laboratory there are seven illuminance sensors: one external is located on the roof of the laboratory and six internal sensors are connected to a data acquisition system. The internal sensors are positioned under the internal diffusive device at an height of 0.85 m from the floor to simulate a working plane. The numerical data are obtained through a simulation software. This paper shows the comparison between the experimental and numerical results concerning the behavior of the lightpipe.

Keywords: Daylighting, Desktop Radiance, Lightpipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
3834 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are being considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. The flow characteristics are studied by Computational Fluid Dynamic simulation by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinguished characteristics of flow velocity between “convergent” and “divergent” grating placements is up to 10% in confined conditions. Furthermore, the velocity in case of convergent grating is higher than that of divergent grating.

Keywords: Marine current energy, marine current energy converter, turbine grating, RANS simulation, water flow velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
3833 A Parametric Study on Deoiling Hydrocyclones Flow Field

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
3832 A Systematic Construction of Instability Bounds in LIS Networks

Authors: Dimitrios Koukopoulos

Abstract:

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
3831 A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development

Authors: Redha Elhuni, M. Munir Ahmad

Abstract:

The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in Oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).

Keywords: TQM, CQFs, Oil & Gas, OSD, Libya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4277
3830 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
3829 A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract:

We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
3828 An Approach to Manage and Evaluate Asset Performance

Authors: Mohammed S. ALSaidi, John P. Mo

Abstract:

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

Keywords: Asset management, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
3827 Summing ANFIS PID Control of Passenger Seat Vibrations in Active Quarter Car Model

Authors: Devdutt

Abstract:

In this paper, passenger seat vibration control of an active quarter car model under random road excitations is considered. The designed ANFIS and Summing ANFIS PID controllers are assembled in primary suspension system of quarter car model. Simulation work is performed in time and frequency domain to obtain passenger seat acceleration and displacement responses. Simulation results show that Summing ANFIS PID based controller is highly suitable to suppress the road induced vibrations in quarter car model to achieve desired passenger ride comfort and safety compared to ANFIS and passive system.

Keywords: Quarter car model, Active suspension system, Summing ANFIS PID controller, Passenger ride comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
3826 Virtual Mechanical Engineering Education – A Case Study

Authors: S. H. R. Lo

Abstract:

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Keywords: Computational modelling and simulation, mechanical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
3825 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method

Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya

Abstract:

The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.

Keywords: ALE, coupling, FEM, fluid-structure interaction, one-way method, two-way method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
3824 A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range

Authors: Nasser Erfani Majd, Mojtaba Lotfizad

Abstract:

In this paper, an ultra low power and low jitter 12bit CMOS digitally controlled oscillator (DCO) design is presented. Based on a ring oscillator implemented with low power Schmitt trigger based inverters. Simulation of the proposed DCO using 32nm CMOS Predictive Transistor Model (PTM) achieves controllable frequency range of 550MHz~830MHz with a wide linearity and high resolution. Monte Carlo simulation demonstrates that the time-period jitter due to random power supply fluctuation is under 31ps and the power consumption is 0.5677mW at 750MHz with 1.2V power supply and 0.53-ps resolution. The proposed DCO has a good robustness to voltage and temperature variations and better linearity comparing to the conventional design.

Keywords: digitally controlled oscillator (DCO), low power, jitter; good linearity, robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
3823 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
3822 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
3821 Modeling of Single-Particle Impact in Abrasive Water Jet Machining

Authors: S. Y. Ahmadi-Brooghani, H. Hassanzadeh, P. Kahhal

Abstract:

This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.

Keywords: Abrasive water jet machining, Adaptive meshcontrol, Explicit finite elements analysis, Single-particle impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
3820 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: Wind fragility, glass window, high rise apartment, Monte Carlo Simulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
3819 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as Pf Vs Pd for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: Spectrum sensing, Energy detection, fading channels, Probability of detection, probability of false alarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095
3818 A Planning Model for Evacuation in Building

Authors: Hsin-Yun Lee, Hao-Hsi Tseng

Abstract:

Previous studies mass evacuation route network does not fully reflect the step-by-step behavior and evacuees make routing decisions. Therefore, they do not work as expected when applied to the evacuation route planning is valid. This article describes where evacuees may have to make a direction to select all areas were identified as guiding points to improve evacuation routes network. This improved route network can be used as a basis for the layout can be used to guide the signs indicate that provides the required evacuation direction. This article also describes that combines simulation and artificial bee colony algorithm to provide the proposed routing solutions, to plan an integrated routing mode. The improved network and the model used is the cinema as a case study to assess the floor. The effectiveness of guidance solution in the total evacuation time is significant by verification.

Keywords: Artificial bee colony, Evacuation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
3817 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: Ecological farming system, energy simulation, evaporative cooling system, treated wastewater, temperature, humidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
3816 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die

Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani

Abstract:

Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.

Keywords: Die casting, finite element, flange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831
3815 Contribution to Active and Passive Control of Flow around a Cylinder

Authors: M. Tahar Bouzaher

Abstract:

This numerical study aims to develop a coupled, passive and active control strategy of the flow around a cylinder of diameter D, and Re=4000. The strategy consists to put a cylindrical rod in front of a deforming cylinder. The quasi- elliptical deformation of cylinder follow a sinusoidal law in order to reduce the drag force. To analyze the evolution of unsteady vortices, the Large Eddy Simulation approach is used in this 2D simulation, carried out using ANSYS – Fluent. The movement of deformation is reproduced using an internal subroutine, introduced in the form of a User Defined Function UDF. Two diameters of the rod were tested for a rod placed at a distance L = 3 ×d, with an amplitudes of deformation A = 5%, A = 25% and A = 50% of the cylinder diameter, the frequency of deformation take the values fd = 1fn, 5fn and 8fn, which fn represents the naturel vortex shedding frequency. The results show substantial changes in the flow behavior and for a rod of 6mm (1% D) with amplitude A = 25%, and with a 2fn frequency, drag reduction of 60% was recorded.

Keywords: CFD, Flow separation, control, Boundary layer, rod, Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
3814 What Have Banks Done Wrong?

Authors: F. May Liou, Y. C. Edwin Tang

Abstract:

This paper aims to provide a conceptual framework to examine competitive disadvantage of banks that suffer from poor performance. Banks generate revenues mainly from the interest rate spread on taking deposits and making loans while collecting fees in the process. To maximize firm value, banks seek loan growth and expense control while managing risk associated with loans with respect to non-performing borrowers or narrowing interest spread between assets and liabilities. Competitive disadvantage refers to the failure to access imitable resources and to build managing capabilities to gain sustainable return given appropriate risk management. This paper proposes a four-quadrant framework of organizational typology is subsequently proposed to examine the features of competitive disadvantage in the banking sector. A resource configuration model, which is extracted from CAMEL indicators to examine the underlying features of bank failures.

Keywords: Bank failure, CAMEL, competitive disadvantage, resource configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
3813 Optimization of Lakes Aeration Process

Authors: Mohamed Abdelwahed

Abstract:

The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approach

Keywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
3812 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: Fault detection, inverse simulation, rover, ground robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
3811 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
3810 Demand and Supply Chain Simulation in Telecommunication Industry by Multi-Rate Expert Systems

Authors: Andrus Pedai, Igor Astrov

Abstract:

In modern telecommunications industry, demand & supply chain management (DSCM) needs reliable design and versatile tools to control the material flow. The objective for efficient DSCM is reducing inventory, lead times and related costs in order to assure reliable and on-time deliveries from manufacturing units towards customers. In this paper the multi-rate expert system based methodology for developing simulation tools that would enable optimal DSCM for multi region, high volume and high complexity manufacturing environment was proposed.

Keywords: Demand & supply chain management, expert systems, inventory control, multi-rate control, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881