Search results for: power saving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3157

Search results for: power saving

2197 Techniques for Reliability Evaluation in Distribution System Planning

Authors: T. Lantharthong, N. Phanthuna

Abstract:

This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.

Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4565
2196 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant

Authors: Aziza Benaboud, Alfred Rufer

Abstract:

In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.

Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
2195 Power System Contingency Analysis Using Multiagent Systems

Authors: Anant Oonsivilai, Kenedy A. Greyson

Abstract:

The demand of the energy management systems (EMS) set forth by modern power systems requires fast energy management systems. Contingency analysis is among the functions in EMS which is time consuming. In order to handle this limitation, this paper introduces agent based technology in the contingency analysis. The main function of agents is to speed up the performance. Negotiations process in decision making is explained and the issue set forth is the minimization of the operating costs. The IEEE 14 bus system and its line outage have been used in the research and simulation results are presented.

Keywords: Agents, model, negotiation, optimal dispatch, powersystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
2194 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
2193 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation

Authors: M. Tarafdar Haque, S. Najafi

Abstract:

Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.

Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2192 Distributed Generator Placement and Sizing in Unbalanced Radial Distribution System

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

To minimize power losses, it is important to determine the location and size of local generators to be placed in unbalanced power distribution systems. On account of some inherent features of unbalanced distribution systems, such as radial structure, large number of nodes, a wide range of X/R ratios, the conventional techniques developed for the transmission systems generally fail on the determination of optimum size and location of distributed generators (DGs). This paper presents a simple method for investigating the problem of contemporaneously choosing best location and size of DG in three-phase unbalanced radial distribution system (URDS) for power loss minimization and to improve the voltage profile of the system. Best location of the DG is determined by using voltage index analysis and size of DG is computed by variational technique algorithm according to available standard size of DGs. This paper presents the results of simulations for 25-bus and IEEE 37- bus Unbalanced Radial Distribution system.

Keywords: Distributed generator, unbalanced radial distributionsystem, voltage index analysis, variational algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737
2191 An ACO Based Algorithm for Distribution Networks Including Dispersed Generations

Authors: B. Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

With Power system movement toward restructuring along with factors such as life environment pollution, problems of transmission expansion and with advancement in construction technology of small generation units, it is expected that small units like wind turbines, fuel cells, photovoltaic, ... that most of the time connect to the distribution networks play a very essential role in electric power industry. With increase in developing usage of small generation units, management of distribution networks should be reviewed. The target of this paper is to present a new method for optimal management of active and reactive power in distribution networks with regard to costs pertaining to various types of dispersed generations, capacitors and cost of electric energy achieved from network. In other words, in this method it-s endeavored to select optimal sources of active and reactive power generation and controlling equipments such as dispersed generations, capacitors, under load tapchanger transformers and substations in a way that firstly costs in relation to them are minimized and secondly technical and physical constraints are regarded. Because the optimal management of distribution networks is an optimization problem with continuous and discrete variables, the new evolutionary method based on Ant Colony Algorithm has been applied. The simulation results of the method tested on two cases containing 23 and 34 buses exist and will be shown at later sections.

Keywords: Distributed Generation, Optimal Operation Management of distribution networks, Ant Colony Optimization(ACO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
2190 Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels

Authors: Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver’s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel.

Keywords: Aerodynamics, wells turbine, bicycle, wind engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
2189 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability

Authors: Mohsen Bagheri, Ahmad Afifi

Abstract:

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on Instrumentation amplifier and it is useful for reducing offset In Wheatstone Bridge. The obtained gain is 645 with 1μv/°c Equivalent drift and 1.58mw power consumption. A Schmitt trigger and multiplexer circuit control output node. a high speed counter is designed in this work .the proposed circuit is designed and simulated In 0.18μm CMOS technology with 1.8v power supply.

Keywords: Piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
2188 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
2187 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2186 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
2185 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
2184 A 1.8 V RF CMOS Active Inductor with 0.18 um CMOS Technology

Authors: Siavash Heydarzadeh, Massoud Dousti

Abstract:

A active inductor in CMOS techonology with a supply voltage of 1.8V is presented. The value of the inductance L can be in the range from 0.12nH to 0.25nH in high frequency(HF). The proposed active inductor is designed in TSMC 0.18-um CMOS technology. The power dissipation of this inductor can retain constant at all operating frequency bands and consume around 20mW from 1.8V power supply. Inductors designed by integrated circuit occupy much smaller area, for this reason,attracted researchers attention for more than decade. In this design we used Advanced Designed System (ADS) for simulating cicuit.

Keywords: CMOS active inductor , 0.18um CMOS technology , ADS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3333
2183 The Effect of Tmax in Energy Consumption in 0IEEE 802.16e with Traffic Load

Authors: Mohammadreza Sahebi, Arash Azizi Mazreah, Asadollah Shahbahrami, Bahram Bakhshi

Abstract:

Energy consumption is an important design issue for Mobile Subscriber Station (MSS) in the standard IEEE 802.16e. Because mobility of MSS implies that energy saving becomes an issue so that lifetime of MSS can be extended before re-charging. Also, the mechanism in efficiently managing the limited energy is becoming very significant since a MSS is generally energized by battery. For these, sleep mode operation is recently specified in the MAC (Medium Access Control) protocol. In order to reduce the energy consumption, we focus on the sleep-mode and wake-mode of the MAC layer, which are included in the IEEE 802.16 standards [1- 2].

Keywords: IEEE 802.16e, Sleep-mode, Wake-mode, Downlink, Mobile Subscriber Station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
2182 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2181 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: Photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2180 Characteristics of the Storage Stability for Different Saccharomyces cerevisiae Strains

Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed B. M. Ahmed, Mohamed Fadel

Abstract:

Storage stability is the important factor of baker's yeast quality. Effect of the storage period (fifteen days) on storage sugars and cell viability of baker's yeast, produced from three S. cerevisiae strains (FC-620, FH-620, and FAT-12) as comparison with baker's yeast produced by S. cerevisae F-707 (original strain of baker's yeast factory) were investigated. Studied trehalose and glycogen content ranged from 10.19 to 14.79 % and from 10.05 to 10.69 % (d.w.), respectively before storage. The trehalose and glycogen content of all strains was decreased by increasing the storage period with no significant differences between the reduction rates of trehalose. Meanwhile, reduction rates of glycogen had significant differences between different strains, where the FH-620 and FC-620 strains had lowest rates as 18.12 and 20.70 %, respectively. Also, total viable cells and gassing power of all strains were decreased by increasing the storage period. FH-620 and FC-620 strains had the lowest values of reduction rates as an indicator of storage resistant. Where the reduction rates in total viable cells of FH-620 and FC-620 strains were 22.05 and 24.70%, respectively, while the reduction rates of gassing power were 20.90 and 24.30%, in the same order. On other hand, FAT-12 strain was more sensitive to storage as compared to original strain, where the reduction rates were 35.60 and 35.75%, respectively for total viable cells and gassing power.

Keywords: Baker’s yeast, trehalose, glycogen, gassing power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
2179 An Energy Efficient Digital Baseband for Batteryless Remote Control

Authors: Wei-Da Toh, Yuan Gao, Minkyu Je

Abstract:

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
2178 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: Distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
2177 Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants

Authors: Anja Kurz, Marc Flynn, Tobias Good, Marco Caversaccio, Martin Kompis

Abstract:

Bone Anchored Hearing Implants (BAHI) are  routinely used in patients with conductive or mixed hearing loss, e.g.  if conventional air conduction hearing aids cannot be used. New  sound processors and new fitting software now allow the adjustment  of parameters such as loudness compression ratios or maximum  power output separately. Today it is unclear, how the choice of these  parameters influences aided speech understanding in BAHI users.  In this prospective experimental study, the effect of varying the  compression ratio and lowering the maximum power output in a  BAHI were investigated.  Twelve experienced adult subjects with a mixed hearing loss  participated in this study. Four different compression ratios (1.0; 1.3;  1.6; 2.0) were tested along with two different maximum power output  settings, resulting in a total of eight different programs. Each  participant tested each program during two weeks. A blinded Latin  square design was used to minimize bias.  For each of the eight programs, speech understanding in quiet and  in noise was assessed. For speech in quiet, the Freiburg number test  and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL  were used. For speech in noise, the Oldenburg sentence test was  administered.  Speech understanding in quiet and in noise was improved  significantly in the aided condition in any program, when compared  to the unaided condition. However, no significant differences were  found between any of the eight programs. In contrast, on a subjective  level there was a significant preference for medium compression  ratios of 1.3 to 1.6 and higher maximum power output.

 

Keywords: Bone Anchored Hearing Implant, Compression, Maximum Power Output, Speech understanding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2176 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Future Implementation

Authors: M. Laamim, A. Benazzouz, A. Rochd, A. Ghennioui, A. El Fadili, M. Benzaazoua

Abstract:

Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.

Keywords: Smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
2175 Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

Authors: Alibek Issakhov

Abstract:

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Keywords: thermal power plant, hydrothermal process, large eddy simulation, water reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2174 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
2173 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

 

Keywords: Advanced control room, human factor issues, human performance, human error, nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2172 Design Considerations of PV Water Pumping and Rural Electricity System (2011) in Lower Myanmar

Authors: Nang Saw Yuzana Kya ing, Wunna Swe

Abstract:

Photovoltaic (PV) systems provides a viable means of power generation for applications like powering residential appliances, electrification of villages in rural areas, refrigeration and water pumping. Photovoltaic-power generation is reliable. The operation and maintenance costs are very low. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the solar energy could hopefully become the final solution to its energy supply problem in rural area.

Keywords: Myanmar, Standalone PV Inverter, PV WaterPumping, Design Analysis, Induction Motor Driving System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
2171 Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor

Authors: Y.Srinivasa Kishore Babu, G.Tulasi Ram Das

Abstract:

This paper presents a comparative study of two most popular control strategies for Induction motor (IM) drives: Field-Oriented Control (FOC) and Direct Torque Control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Block set that allows a complete representation of the power section (inverter and IM) and the control system.

Keywords: IM, FOC, DTC, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
2170 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants

Authors: Dong Wook Lee

Abstract:

This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.

Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
2169 Spectral Analysis of Radiation-Induced Natural Convection in Littoral Waters

Authors: Yadan Mao, Chengwang Lei, John C. Patterson

Abstract:

The mixing of pollutions and sediments in near shore regions of natural water bodies depends heavily on the characteristics such as the strength and frequency of flow instability. In the present paper, the instability of natural convection induced by absorption of solar radiation in littoral regions is considered. Spectral analysis is conducted on the quasi-steady state flow to reveal the power and frequency modes of the instability at various positions. Results indicate that the power of instability, the number of frequency modes, the prominence of higher frequency modes, and the highest frequency mode increase with the offshore distance and/or Rayleigh number. Harmonic modes are present at relatively low Rayleigh numbers. For a given offshore distance, the position with the strongest power of instability is located adjacent to the sloping bottom while the frequency modes are the same over the local depth. As the Rayleigh number increases, the unstable region extends toward the shore.

Keywords: Instability, Littoral waters, natural convection, Spectral analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
2168 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723