Search results for: linear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2322

Search results for: linear regression

1362 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1361 A Model for Optimal Design of Mixed Renewable Warranty Policy for Non-Repairable Weibull Life Products under Conflict between Customer and Manufacturer Interests

Authors: Saleem Z. Ramadan

Abstract:

A model is presented to find the optimal design of the mixed renewable warranty policy for non-repairable Weibull life products. The optimal design considers the conflict of interests between the customer and the manufacturer: the customer interests are longer full rebate coverage period and longer total warranty coverage period, the manufacturer interests are lower warranty cost and lower risk. The design factors are full rebate and total warranty coverage periods. Results showed that mixed policy is better than full rebate policy in terms of risk and total warranty coverage period in all of the three bathtub regions. In addition, results showed that linear policy is better than mixed policy in infant mortality and constant failure regions while the mixed policy is better than linear policy in ageing region of the model. Furthermore, the results showed that using burn-in period for infant mortality products reduces warranty cost and risk.

Keywords: Reliability, Mixed warranty policy, Optimization, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1360 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: Landsat 8, oligotrophic lake, remote sensing, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1359 Evaluation of the Beach Erosion Process in Varadero, Matanzas, Cuba: Effects of Different Hurricane Trajectories

Authors: Ana Gabriela Diaz, Luis Fermín Córdova, Jr., Roberto Lamazares

Abstract:

The island of Cuba, the largest of the Greater Antilles, is located in the tropical North Atlantic. It is annually affected by numerous weather events, which have caused severe damage to our coastal areas. In the same way that many other coastlines around the world, the beautiful beaches of the Hicacos Peninsula also suffer from erosion. This leads to a structural regression of the coastline. If measures are not taken, the hotels will be exposed to the advance of the sea, and it will be a serious problem for the economy. With the aim of studying the intensity of this type of activity, specialists of group of coastal and marine engineering from CIH, in the framework of the research conducted within the project MEGACOSTAS 2, provide their research to simulate extreme events and assess their impact in coastal areas, mainly regarding the definition of flood volumes and morphodynamic changes in sandy beaches. The main objective of this work is the evaluation of the process of Varadero beach erosion (the coastal sector has an important impact in the country's economy) on the Hicacos Peninsula for different paths of hurricanes. The mathematical model XBeach, which was integrated into the Coastal engineering system introduced by the project of MEGACOSTA 2 to determine the area and the more critical profiles for the path of hurricanes under study, was applied. The results of this project have shown that Center area is the greatest dynamic area in the simulation of the three paths of hurricanes under study, showing high erosion volumes and the greatest average length of regression of the coastline, from 15- 22 m.

Keywords: Beach, erosion, mathematical model, coastal areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
1358 Potentials of Raphia hookeri Wine in Livelihood Sustenance among Rural and Urban Populations in Nigeria

Authors: A. A. Aiyeloja, A.T. Oladele, O. Tumulo

Abstract:

Raphia wine is an important forest product with cultural significance besides its use as medicine and food in southern Nigeria. This work aims to evaluate the profitability of Raphia wine production and marketing in Sapele Local Government Area, Nigeria. Four communities (Sapele, Ogiede, Okuoke and Elume) were randomly selected for data collection via questionnaires among producers and marketers. A total of 50 producers and 34 marketers were randomly selected for interview. Data was analyzed using descriptive statistics, profit margin, multiple regression and rate of returns on investment (RORI). Annual average profit was highest in Okuoke (Producers – N90, 000.00, Marketers - N70, 000.00) and least in Sapele (Producers N50, 000.00, Marketers – N45, 000.00). Calculated RORI for marketers were Elume (40.0%), Okuoke (25.0%), Ogiede (33.3%) and Sapele (50.0%). Regression results showed that location has significant effects (0.000, ρ ≤ 0.05) on profit margins. Male (58.8%) and female (41.2%) invest in Raphia wine marketing, while males (100.0%) dominate production. Results showed that Raphia wine has potentials to generate household income, enhance food security and improve quality of life in rural, semi-urban and urban communities. Improved marketing channels, storage facilities and credit facilities via cooperative groups are recommended for producers and marketers by concerned agencies.

Keywords: Raphia wine, Profit margin, RORI, Livelihood, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
1357 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1356 Measuring the Structural Similarity of Web-based Documents: A Novel Approach

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian

Abstract:

Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1355 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
1354 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1353 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
1352 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: Dynamic behavior, water storage tank, fluid-structure interaction, flexible wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
1351 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik

Abstract:

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
1350 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques

Authors: C. Ardil

Abstract:

This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.

Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
1349 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models

Authors: N. Mirzaei Varzeghani, M. Saffarzadeh, A. Naderan, A. Taheri

Abstract:

Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, more passengers aged 55 and older using this airport, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.

Keywords: Multimodal transportation, travel behavior, demand modeling, statistical models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
1348 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid

Authors: Hemant I. Joshi, Vivek J. Pandya

Abstract:

This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.

Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1347 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.

Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
1346 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries

Authors: Shorena Pharjiani

Abstract:

Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.

Keywords: Central and East European countries (CEEC), economic growth, FDI, panel data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1345 Impact of the Electricity Market Prices on Energy Storage Operation during the COVID-19 Pandemic

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: Electrical market prices, electricity market, energy storage optimization, mixed integer linear programming, MILP, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
1344 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Authors: N. Abbas, S. Lagomarsino, S. Cattari

Abstract:

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Keywords: Foundation uplift, Iso-uplift curves, Resistance domain, Soil yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
1343 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1342 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1341 The Impact of Socio-Economic and Type of Religion on the Behavior of Obedience among Arab-Israeli Teenagers

Authors: Sadhana Ghnayem

Abstract:

This article examines the relationship between several socio-economic and background variables of Arab-Israeli families and their effect on the conflict management style of forcing, where teenage children are expected to obey their parents without questioning. The article explores the inter-generational gap and the desire of Arab-Israeli parents to force their teenage children to obey without questioning. The independent variables include: the sex of the parent, religion (Christian or Muslim), income of the parent, years of education of the parent, and the sex of the teenage child. We use the dependent variable of “Obedience Without Questioning” that is reported twice: by each of the parents as well as by the children. We circulated a questionnaire and collected data from a sample of 180 parents and their adolescent child living in the Galilee area during 2018. In this questionnaire we asked each of the parent and his/her teenage child about whether the latter is expected to follow the instructions of the former without questioning. The outcome of this article indicates, first, that Christian-Arab families are less authoritarian than Muslims families in demanding sheer obedience from their children. Second, female parents indicate more than male parents that their teenage child indeed obeys without questioning. Third, there is a negative correlation between the variable “Income” and “Obedience without Questioning.” Yet, the regression coefficient of this variable is close zero. Fourth, there is a positive correlation between years of education and obedience reported by the children. In other words, more educated parents are more likely to demand obedience from their children.  Finally, after running the regression, the study also found that the impact of the variables of religion as well as the sex of the child on the dependent variable of obedience is also significant at above 95 and 90%, respectively.

Keywords: Arab-Israeli parents, Obedience, Forcing, Inter-generational gap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
1340 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214
1339 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
1338 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida

Abstract:

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1337 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.

Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
1336 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: Meta-modal, objective function, steel frames, seismic analysis, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
1335 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan

Abstract:

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1334 A Control Strategy Based on UTT and ISCT for 3P4W UPQC

Authors: Yash Pal, A.Swarup, Bhim Singh

Abstract:

This paper presents a novel control strategy of a threephase four-wire Unified Power Quality (UPQC) for an improvement in power quality. The UPQC is realized by integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a thee-phase, four leg voltage source inverter (VSI) and the series APF is realized using a three-phase, three leg VSI. A control technique based on unit vector template technique (UTT) is used to get the reference signals for series APF, while instantaneous sequence component theory (ISCT) is used for the control of Shunt APF. The performance of the implemented control algorithm is evaluated in terms of power-factor correction, load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell in a three-phase four-wire distribution system for different combination of linear and non-linear loads. In this proposed control scheme of UPQC, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, there by reducing the computational delay and the required sensors. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC.

Keywords: Power Quality, UPQC, Harmonics, Load Balancing, Power Factor Correction, voltage harmonic mitigation, currentharmonic mitigation, voltage sag, swell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
1333 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.

Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887