Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: Landsat 8, oligotrophic lake, remote sensing, water quality.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314913

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564

References:


[1] M. Bonansea, M.C. Rodriguez, L. Pinotti, S. Ferrero, “Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina)”, Remote Sensing of Environment, vol. 15, pp. 28–41, 2015.
[2] C.J. Strobel, J. Paul, M. Hughes, H.W. Buffum, B.S Brown, K. Summers, “Using information on spatial variability of small estuaries in designing large-scale estuarine monitoring programs”, Environmental Monitoring and Assessment, vol. 63, pp. 223-236, 2000.
[3] V.M. Mantas, A.J.S.C. Pereira, J. Neto, J. Patrício, J.C. Marques, “Monitoring estuarine water quality using satellite imagery. The Mondego river estuary (Portugal) as a case study”, Ocean & Coastal Management, vol. 72, pp. 13-21, 2013.
[4] C. Giardino, M. Pepe, P.A. Brivio, P. Ghezzi, E. Zilioli, “Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery”, Science of the Total Environment, vol. 268, no. 1–3, pp. 19–29, 2001.
[5] N. Sriwongsitanon, K. Surakit, S. Thianpopirug, “Influence of atmospheric correction and number of sampling points on the accuracy of water clarity assessment using remote sensing application”. Journal of Hydrology, vol. 401, no. 3–4, pp. 203–220, 2011.
[6] P. Trivero, M. Borasi, W. Biamino, M. Cavagnero, C. Rinaudo, M. Bonansea, et al., “River pollution remediation monitored by optical and infrared high-resolution satellite images”, Environmental Monitoring and Assessment, vol. 185, no. 9, pp. 7647–7658, 2013.
[7] Q. Chen, Y. Zhang, A. Ekroos, M. Hallikainen, “The role of remote sensing technology in the EU water framework directive (WFD)”, Environmental Science & Policy, vol. 7, no.4, pp. 267-276, 2004.
[8] A. C. Cardoso, A. Solimini, G. Premazzi, L. Carvalho, A. Lyche, S. Rekolainen, “Phosphorus reference concentrations in European lakes”, Hydrobiologia, vol. 584, no.1, pp. 3–12, 2007.
[9] L. Carvalho, A. Solimini, G. Phillips, M. Berg, O. P. Pietiläinen, A.L. Solheim et al., “Chlorophyll reference conditions for European lake types used for intercalibration of ecological status”, Aquatic Ecology, vol. 42, no. 2, pp. 203–211, 2008.
[10] S. Poikane, M.H. Alves, C. Argillier, M. Berg, F. Buzzi, E. Hoehn et al., “Defining chlorophyll-a reference conditions in European lakes”, Environmental Management, vol. 45, no. 6, pp. 1286– 1298, 2010.
[11] S. Huo, B. Xi, J. Su, F. Zan, Q. Chen, D. Ji, C. Ma, “Determining reference conditions for TN, TP, SD and Chl-a in eastern plain ecoregion lakes, China”, Journal of Environmental Sciences, vol. 25, no.5, pp. 1001–1006, 2013.
[12] MA Eleveld, “Wind-induced resuspension in a shallow lake from Medium Resolution Imaging Spectrometer (MERIS) full-resolution reflectances”, Water Resour. Res., vol. 48, no.4, W04508, 2012.
[13] K. Randolph, J. Wilson, L. Tedesco, L. Li, DL Pascual, E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin”, Remote Sens. Environ., vol. 112, pp. 4009-4019, 2008.
[14] A. Ruiz-Verdu, SGH. Simis, C. de Hoyos, H.J. Gons, R. Peρa- Martinez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass”, Remote Sens. Environ., vol. 112, pp. 3996-4008, 2008.
[15] T. Kutser, D.C. Pierson, K. Kallio, A. Reinart, S. Sobek, “Mapping lake CDOM by satellite remote sensing”, Remote Sens. Environ., vol. 94, pp. 535-540, 2005.
[16] C. Giardino, M. Bresciani, D. Stroppiana, A. Oggioni, G. Morabito, “Optical remote sensing of lakes: an overview on Lake Maggiore”, J. Limnol., vol.73, no. s1, pp. 201-214, 2014. DOI: 10.4081/jlimnol.2014.817.
[17] M.W. Matthews, “A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters”, International Journal of Remote Sensing, vol. 32, no. 21, pp. 6855–6899, 2011.
[18] D. Odermatt, A. Gitelson, V.E. Brando, M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery”, Remote Sensing of Environment, vol.118, pp.116–126, 2012a.
[19] Y.Z. Yacobi, W.J. Moses, S. Kaganovsky, B. Sulimani, B.C. Leavitt, A.A. Gitelson, “NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study”, Water Research, vol. 45, pp. 2428–2436, 2011.
[20] C. Giardino, A. Oggioni, M. Bresciani, H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case-study of alpine lakes in the Mount Everest region”, Mt. Res. Dev., vol. 30, pp. 157-168, 2010b.
[21] T. Kutser, B. Paavel, L. Metsamaa, “Mapping coloured dissolved organic matter concentration in coastal waters”, Int. J. Remote Sens., vol. 30, pp. 5843-5849, 2009.
[22] T. Kutser, “The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters”, Remote Sensing of Environment, vol. 123, pp. 334–338, 2012.
[23] I.M. McCullough, C.S. Loftin, S.A. Sader, “Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity”, Remote Sensing of Environment, vol. 123, pp. 109–115, 2012a.
[24] P. Brezonik, D. Menken, M. Bauer, “Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM)”, Lake and Reservoir Management, vol. 21, no. 4, pp. 373–382, 2005.
[25] N. Karakaya, F. Evrendilek, G.R. Aslan, K. Gungor, D. Karakas, “Monitoring of lake water quality along with trophic gradient using landsat data”, International Journal of Environmental Science and Technology, vol. 8, no. 4, pp. 817–822, 2011.
[26] E.J. Tebbs, J.J. Remedios, D.M. Harper, “Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, Flamingo Lake, using Landsat ETM+”, Remote Sensing of Environment, vol. 135, pp. 92–106, 2013.
[27] N. Torbick, H. Feng, J. Zhang, J. Qi, H. Zhang, B. Becker, “Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+”, Journal of Great Lakes Research, vol. 34, no. 3, pp. 559–565, 2008.
[28] R.K. Vincent, X. Qin, R.M. McKay, J. Miner, K. Czajkowski, J. Savino et al., “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie”, Remote Sensing of Environment, vol. 89, no. 3, pp. 381–392, 2004.
[29] Y.Z. Yacobi, A. Gitelson, M. Mayo, “Remote sensing of chlorophyll in Lake Kinneret using high spectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development”, Journal of Plankton Research, vol. 17, no.11, pp. 2155–2173, 1995.
[30] A.N. Tyler, E. Svab, T. Preston, M. Presing, A.W. Kovacs, “Remote sensing of the water quality of shallow lakes: A mixture modeling approach to quantifying phytoplankton in water characterized by high-suspended sediment”, Int. J. Remote Sens., vol. 27, pp. 1521-1537, 2006.
[31] X. Guan, J. Li, W.G. Booty, “Monitoring lake Simcoe water clarity using Landsat-5 TM images”, Water Resources Management, vol. 25, no. 8, pp. 2015–2033, 2011.
[32] D.G. Hadjimitsis, M.G. Hadjimitsis, C. Clayton, B.A. Clarke, “Determination of turbidity in Kourris dam in Cyprus utilizing Landsat TM remotely sensed data”, Water Resources Management, vol. 20, no. 3, pp. 449–465, 2006.
[33] D. Zhao, Y. Cai, H. Jiang, D. Xu, W. Zhang, S. An, “Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery”, Advances in Water Resources, vol. 34, no. 2, pp. 165–173, 2011.
[34] T.H. Stadelmann, P.L. Brezonik, S.M. Kloiber, “Seasonal patterns of chlorophyll-a and Secchi disk transparency in lakes of east-central Minnesota: implications for design of ground and satellite-based monitoring programs”, Lake Reserv. Manage.,vol. 17, pp. 299-314, 2001.
[35] L.G. Olmanson, M.E. Bauer, P.L. Brezonik“, A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes”, Remote Sens. Environ., vol. 112, pp. 4086-4097, 2008.
[36] P. L. Brezonik, G. L. Olmanson, J.C. Finlay, M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters”, Remote Sensing of Environment, vol. 157, pp. 199-215, 2015, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2014.04.033.
[37] W. Zhu, Q. Yu, Y.Q. Tian, B.L. Becker, T. Zheng, H. J. Carrick, “An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments”, Remote Sensing of Environment, vol. 140, pp. 766–778, 2014.
[38] T.P. Albright, D.J. Ode, “Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data”, Hydrobiologia, vol. 661, pp. 469-474, 2011.
[39] M. Bonansea, R.L. Fernandez, “Remote sensing of suspended solid concentration in a reservoir with frequents wildland fires on its watershed”, Water Science and Technology, vol. 67, no.1, pp. 217–223, 2013.
[40] J. Guang, Y.Wey, J.Huang, “A model for the retrieval of suspended sediment concentrations in Taihu Lake from TM images”, Journal of Geographical Sciences, vol. 16, no.4, pp. 458–464, 2006.
[41] A. Kulkarni, “Water quality retrieval from Landsat TM imagery”, Procedia Computer Science, vol. 6, pp. 475–480, 2011.
[42] M. Onderka, P. Pekárová, “Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data”, Science of the Total Environment, vol. 397, no.1, pp. 238–243, 2008.
[43] W. Zhou, S. Wang, Y. Zhou, A. Troy, “Mapping the concentrations of total suspended matter in lake Taihu, China, using Landsat-5 TM data”, Int. J. Remote Sens., vol. 27, pp. 1177-1191, 2006.
[44] J. Chen, W.T. Quan, “Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China”, IEEE J-STARS, vol. 5, no.1, pp. 273–280, 2012, DOI: 10.1109/JSTARS.2011.2174339.
[45] K. Dewidar, A. Khedr, “Water quality assessment with simultaneous Landsat-5 TM at Manzala Lagoon, Egypt”, Hydrobiologia, vol. 457, no.1–3, pp. 49–58, 2001.
[46] C.F. Wu, J.P. Wu, J.G. Qi, L.S. Zhang, H.Q. Huang, L.P. Lou, et al., “Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data”, Int. J. Remote Sens., vol. 31, no. 9, pp. 2309–2324, 2010.
[47] E. M. Isenstein, Mi-H. Park, “Assessment of nutrient distributions in Lake Champlain using satellite remote sensing”, Journal of Environmental Sciences, vol. 26, pp. 1831 – 1836, 2014, http://dx.doi.org/10.1016/j.jes.2014.06.019.
[48] H. J. Gons, M. T. Auer, S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes”, Remote Sensing of Environment, vol. 112, pp. 4098–4106, 2008.
[49] N. Pahlevan and J. R. Schott, “Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies”, Selected Topics in Applied Earth Observations and Remote Sensing IEEE Journal, vol. 6, pp. 360-374, 2013.
[50] I. M. McCullough, "Remote Estimation of Regional Lake Clarity with Landsat TM and MODIS Satellite Imagery", Electronic Theses and Dissertations, Paper 1744, 2012.
[51] R. C. Smith, J. E. Tyler, C. R. Goldman, "Optical properties and colour of Lake Tahoe and Crater Lake", Limnol. Oceanogr.,vol.18, pp.189-199, 1973.
[52] D. P. Morris, H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R.Moeller, C. Queimalinos, "The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon", Limnol. Oceanogr., vol.40, pp.1381-1391, 1995.
[53] E. J. Fee, R. E. Hecky, S. E. M. Kasian, D. R. Cruikshank, “Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes, Limnology and Oceanography, vol. 41, 1996, doi: 10.4319/lo.1996.41.5.0912.
[54] C. E. Williamson, R. S. Stemberger, D. P. Morris, T. M. Frost, S. G. Paulsen, “Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities", Limnology and Oceanography, vol. 41, no. 5, pp. 1024-1034, 1996.
[55] J. M. Gunn, E. Snucins, N. D.Yan, M. T. Arts, “Use of water clarity to monitor the effects of climate change and other stressors on oligotrophic lakes", Environmental Monitoring and Assessment, vol. 67, pp. 69–88, 2001.
[56] P. G. Welsh, J. F. Skidmore, D. J. Spry, D. G. Dixon, P. V. Hodson, N. J. Hutchinson, B. E.Hickie, “Effect of pH and Dissolved Organic Carbon on the Toxicity of Copper to Larval Fathead Minnow (Pimephales promelas) in Natural Lake Waters of Low Alkalinity", Canadian Journal of Fisheries and Aquatic Sciences, vol. 50, no.7, pp. 1356-1362, 1993, https://doi.org/10.1139/f93-155.
[57] C.T. Driscoll, V. Blette, C. Yan, et al., “The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes", Water, Air and Soil Pollut., vol. 80, pp. 499-508, 1995, https://doi.org/10.1007/BF01189700.
[58] D.W. Schindler, P.J. Curtis, S.E. Bayley, et al., “Climate-induced changes in the dissolved organic carbon budgets of boreal lakes", Biogeochemistry, vol. 36, no. 1, pp. 9-28, 1997, https://doi.org/10.1023/A:1005792014547.
[59] C. E. Williamson, D. P. Morris, M. L. Pace, 0. G. Olson, “Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm", Limnology and Oceanography, vol. 44, pp. 795-803, 1999.
[60] A. Perez-Fuentetaja, PJ. Dillon, N.D. Yan, D.J. McQueen, “Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian shield lakes", Aquatic Ecology, vol. 33, pp.127-133, 1999.
[61] I. Bertahas, E. Dimitriou, I. Karaouzas, S. Laschou, I. Zacharias, “Climate change and agricultural pollution effects on the trophic status of a Mediterranean lake", Acta hydrochim. hydrobiol., vol.34, pp. 349–359, 2006.
[62] Th. Koussouris, “Contribution of the impact study of agricultural and cattle-raising activities to the trophic status of Trichonis Lake and the possibilities of fishery development", PhD thesis, University of Thessaloniki, 1993.
[63] I. Zacharias, I. Bertachas, N. Skoulikidis, T. Koussouris, “Greek Lakes: Limnological overview", Lakes & Reservoirs, Research & Management, vol.7, no.1, pp. 55–62, 2002.
[64] E. Dimitriou, I. Zacharias, Th. Koussouris, “Water resources management plan for Trichonis Lake catchment", final report. In: Zacharias, I., Koussouris, Th. (Eds.), Actions for the Protection of Calcareous Bogs/Fens in Trichonis Lake. Technical Report, NCMR/IIW, pp.70, 2001.
[65] I. Zacharias, E. Dimitriou, Th. Koussouris, “Developing sustainable water management scenarios by using thorough hydrologic analysis and environmental criteria", Journal of Environmental Management, vol. 69, pp.401–412, 2003.
[66] I. Zacharias, E. Dimitriou, Th. Koussouris, “Integrated water management scenarios for wetland protection: application in Trichonis Lake", Environmental Modelling & Software, vol. 20, pp.177-185, 2005.
[67] L. Olmanson, P. Brezonik, M. Bauer, “Evaluation of Medium to Low Resolution Satellite Imagery for Regional Lake Water Quality Assessments", Water Resources Research, vol. 47, W09515, 2011, doi: 10.1029/2011WR011005.
[68] I. McCoullough, C. Loftin, S. Sader, “High-Frequency Remote Monitoring of Large Lakes with MODIS 500 m Imagery”, Remote Sensing of Environment, vol. 124, pp. 234–241, 2012.
[69] N. Torbick, S. Hession, S. Hagen, N. Wiangwang, B. Becker, J. Qi, “Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery", International Journal of Remote Sensing, vol. 34, no. 21, pp. 7607-7624, 2013, DOI: 10.1080/01431161.2013.822602.
[70] O. Holm-Hansen, C. J. Lorenzen, R. N. Hormes, J. D. H. Strickland, “Fluor metric determination of chlorophyll", Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer, vol.30, pp. 3–15, 1965, doi:10.1093/icesjms/30.1.3.
[71] N. A. Welschmeyer, “Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments", Limnol. Oceanogr., vol. 39, 1994, http://dx.doi.org/ 10.4319/lo.1994.39.8.1985.
[72] J.A. Barsi, K. Lee, G. Kvaran, B.L. Markham, J.A. Pedelty, “The Spectral Response of the Landsat-8 Operational Land Imager", Remote Sens., vol. 6, pp. 10232-10251, 2014, doi: 10.3390/rs61010232.
[73] R. G. Lathrop, T. M. Lillesand, B. S. Yandell, “Testing the utility of simple multi-date thematic mapper calibration algorithms for monitoring turbid inland waters", International Journal of Remote Sensing, vol.10, pp. 2045–2063, 1991.
[74] L. E. Keiner, X. Yan, “A neural network model for estimating sea surface chlorophyll and sediments form Thematic Mapper imagery", Remote Sensing of Environment, vol.66, pp. 153–165, 1998.
[75] EPA—US Environmental Protection Agency, “Nutrient criteria, technical guidance manual, lakes and reservoirs", First Edition, EPA-822-B00-001, 2000.
[76] R. E. Carlson, J. Simpson, “A coordinator’s guide to volunteer lake monitoring methods", North American Lake Management Society, vol.96, 1996.
[77] N. Pahlevan, J. Wei, C. B. Schaaf, J. R. Schott, “Evaluating Radiometric Sensitivity of Landsat 8 over coastal / inland waters". Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 13-18 July 2014, Quebec City, QC, Canada. DOI: 10.1109/IGARSS.2014.6946695.
[78] J. F. R. Gower, G. A. Borstad, “On the potential of MODIS and MERIS for imaging chlorophyll fluorescence from space", International Journal of Remote Sensing, vol. 25, pp.1459−1464, 2004.