Search results for: adaptive learning rate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5324

Search results for: adaptive learning rate.

4364 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila, V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3743
4363 Measuring Cognitive Load - A Solution to Ease Learning of Programming

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Learning programming is difficult for many learners. Some researches have found that the main difficulty relates to cognitive load. Cognitive overload happens in programming due to the nature of the subject which is intrinisicly over-bearing on the working memory. It happens due to the complexity of the subject itself. The problem is made worse by the poor instructional design methodology used in the teaching and learning process. Various efforts have been proposed to reduce the cognitive load, e.g. visualization softwares, part-program method etc. Use of many computer based systems have also been tried to tackle the problem. However, little success has been made to alleviate the problem. More has to be done to overcome this hurdle. This research attempts at understanding how cognitive load can be managed so as to reduce the problem of overloading. We propose a mechanism to measure the cognitive load during pre instruction, post instruction and in instructional stages of learning. This mechanism is used to help the instruction. As the load changes the instruction is made to adapt itself to ensure cognitive viability. This mechanism could be incorporated as a sub domain in the student model of various computer based instructional systems to facilitate the learning of programming.

Keywords: Cognitive load, Working memory, Cognitive Loadmeasurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
4362 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: Acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
4361 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
4360 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: Air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
4359 Practices of Self-Directed Professional Development of Teachers in South African Public Schools

Authors: Rosaline Govender

Abstract:

This research study is an exploration of the selfdirected professional development of teachers who teach in public schools in an era of democracy and educational change in South Africa. Amidst an ever-changing educational system, the teachers in this study position themselves as self-directed teacher-learners where they adopt particular learning practices which enable change within the broader discourses of public schooling. Life-story interviews were used to enter into the private and public spaces of five teachers which offer glimpses of how particular systems shaped their identities, and how the meanings of self-directed teacher-learner shaped their learning practices. Through the Multidimensional Framework of Analysis and Interpretation the teachers’ stories were analysed through three lenses: restorying the field texts - the self through story; the teacher-learner in relation to social contexts, and practices of self-directed learning. This study shows that as teacherlearners learn for change through self-directed learning practices, they develop their agency as transformative intellectuals, which is necessary for the reworking of South African public schools.

Keywords: Professional development, professionality, professionalism, self-directed learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
4358 DSLEP (Data Structure Learning Platform to Aid in Higher Education IT Courses)

Authors: Estevan B. Costa, Armando M. Toda, Marcell A. A. Mesquita, Jacques D. Brancher

Abstract:

The advances in technology in the last five years allowed an improvement in the educational area, as the increasing in the development of educational software. One of the techniques that emerged in this lapse is called Gamification, which is the utilization of video game mechanics outside its bounds. Recent studies involving this technique provided positive results in the application of these concepts in many areas as marketing, health and education. In the last area there are studies that covers from elementary to higher education, with many variations to adequate to the educators methodologies. Among higher education, focusing on IT courses, data structures are an important subject taught in many of these courses, as they are base for many systems. Based on the exposed this paper exposes the development of an interactive web learning environment, called DSLEP (Data Structure Learning Platform), to aid students in higher education IT courses. The system includes basic concepts seen on this subject such as stacks, queues, lists, arrays, trees and was implemented to ease the insertion of new structures. It was also implemented with gamification concepts, such as points, levels, and leader boards, to engage students in the search for knowledge and stimulate self-learning.

Keywords: Gamification, Interactive learning environment, Data structures, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
4357 The Effects of the Impact of Instructional Immediacy on Cognition and Learning in Online Classes

Authors: Glenda A. Gunter

Abstract:

Current research has explored the impact of instructional immediacy, defined as those behaviors that help build close relationships or feelings of closeness, both on cognition and motivation in the traditional classroom and online classroom; however, online courses continue to suffer from higher dropout rates. Based on Albert Bandura-s Social Cognitive Theory, four primary relationships or interactions in an online course will be explored in light of how they can provide immediacy thereby reducing student attrition and improving cognitive learning. The four relationships are teacher-student, student-student, and student-content, and studentcomputer. Results of a study conducted with inservice teachers completing a 14-week online professional development technology course will be examined to demonstrate immediacy strategies that improve cognitive learning and reduce student attrition. Results of the study reveal that students can be motivated through various interactions and instructional immediacy behaviors which lead to higher completion rates, improved self-efficacy, and cognitive learning.

Keywords: Distance Learning, Self-Efficacy, Instructional immediacy, Student achievement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
4356 Affective (and Effective) Teaching and Learning in Higher Education: Getting Social Again

Authors: Laura Zizka, Gaby Probst

Abstract:

The COVID-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to HyFlex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide. 

Keywords: affective teaching and learning, engagement, interaction, motivation, social presence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
4355 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: Education, information, technology, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
4354 The Implementation of Self-Determination Theory on the Opportunities and Challenges for Blended e-Learning in Motivating Egyptian Logistic Learners

Authors: Aisha Tarek Noour, Nick Hubbard

Abstract:

Learner motivation is considered to be an important component for the Blended e-Learning (BL) Method. BL is an effective learning method in multiple domains, which opens several opportunities for its participants to engage in the learning environment. This research explores the learners’ perspective of BL according to the Self-Determination Theory (SDT). It identifies the opportunities and challenges for using the BL in Logistics Education (LE) in Egyptian Higher Education (HE). SDT is approached from different perspectives within the relationship between Intrinsic Motivation (IM), Extrinsic Motivation (EM) and Amotivation (AM). A self-administered face-to-face questionnaire was used to collect data from learners who were geographically widely spread around three colleges of International Transport and Logistics (CILTs) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. Six hundred and sixteen undergraduates responded to a questionnaire survey. Respondents were drawn from three branches in Greater Cairo, Alexandria, and Port Said. The data analysis used was SPSS 22 and AMOS 18.

Keywords: Intrinsic Motivation, Extrinsic Motivation, Amotivation, Blended e-Learning, Self Determination Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
4353 Application of Nano-Zero Valent Iron for Treating Metolachlor in Aqueous Solution

Authors: P. Suntornchot, T. Satapanajaru, S.D. Comfort

Abstract:

Water, soil and sediment contaminated with metolachlor poses a threat to the environment and human health. We determined the effectiveness of nano-zerovalent iron (NZVI) to dechlorinate metolachlor [2-chloro-n-(2-ethyl-6-methyl-phenyl)-n- (1-methoxypropan-2-yl)acetamide] in pH solution and the presence of aluminium salt. The optimum dosage of degradation of 100 mlL-1 metolachlor was 1% (w/v) NZVI. The degradation kinetic rate (kobs) was 0.218×10-3 min-1 and specific first-order rates (kSA) was 8.72×10-7 L m-2min-1. By treating aqueous solutions of metolachlor with NZVI, metolachlor destruction rate were increased as the pH decrease from 10 to 4. Lowering solution pH removes Fe (III) passivating layers from the NZVI and makes it free for reductive transformations. Destruction kinetic rates were 20.8×10-3 min-1 for pH4, 18.9×10-3 min-1 for pH7, 13.8×10-3 min-1 for pH10. In addition, destruction kinetic of metolachlor by NZVI was enhanced when aluminium sulfate was added. The destruction kinetic rate were 20.4×10-3 min-1 for 0.05% Al(SO4)3 and 60×10-3 min-1 for 0.1% Al(SO4)3.

Keywords: destruction, kinetic rate, metolachlor, nano-zerovalent iron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
4352 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
4351 Maximizing Sum-Rate for Multi-User Two-Way Relaying Networks with ANC Protocol

Authors: Muhammad Abrar, Xiang Gui, Amal Punchihewa

Abstract:

In this paper we study the resource allocation problem for an OFDMA based cooperative two-way relaying (TWR) network. We focus on amplify and forward (AF) analog network coding (ANC) protocol. An optimization problem for two basic resources namely, sub-carrier and power is formulated for multi-user TWR networks. A joint optimal optimization problem is investigated and two-step low complexity sub-optimal resource allocation algorithm is proposed for multi-user TWR networks with ANC protocol. The proposed algorithm has been evaluated in term of total achievable system sum-rate and achievable individual sum-rate for each userpair. The good tradeoff between system sum-rate and fairness is observed in the two-step proportional resource allocation scheme.

Keywords: Relay Network, Relay Protocols, Resource Allocation, Two –way relaying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
4350 Enhancements in Blended e-Learning Management System

Authors: Ibrahim S AlNomay, Alaa Jaber, Ghada AlNasser

Abstract:

A learning management system (commonly abbreviated as LMS) is a software application for the administration, documentation, tracking, and reporting of training programs, classroom and online events, e-learning programs, and training content (Ellis 2009). (Hall 2003) defines an LMS as \"software that automates the administration of training events. All Learning Management Systems manage the log-in of registered users, manage course catalogs, record data from learners, and provide reports to management\". Evidence of the worldwide spread of e-learning in recent years is easy to obtain. In April 2003, no fewer than 66,000 fully online courses and 1,200 complete online programs were listed on the TeleCampus portal from TeleEducation (Paulsen 2003). In the report \" The US market in the Self-paced eLearning Products and Services:2010-2015 Forecast and Analysis\" The number of student taken classes exclusively online will be nearly equal (1% less) to the number taken classes exclusively in physical campuses. Number of student taken online course will increase from 1.37 million in 2010 to 3.86 million in 2015 in USA. In another report by The Sloan Consortium three-quarters of institutions report that the economic downturn has increased demand for online courses and programs.

Keywords: LMS, Interactive Materials, Exam Centers, Learning Outcomes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
4349 The Influence of Preprocessing Parameters on Text Categorization

Authors: Jan Pomikalek, Radim Rehurek

Abstract:

Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.

Keywords: Text categorization, machine learning, electronic documents, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
4348 A Program Based on Artistic and Musical Activities to Acquire Educational Concepts for Children with Learning Difficulties

Authors: Ahmed Amin Mousa, Huda Mazeed, Eman Saad

Abstract:

The study aims to identify the extent of effectiveness of the artistic formation program using some types of pastes to reduce the hyperactivity of the kindergarten children with learning difficulties. The researchers have discussed the aforesaid topic, where the research sample included 120 children of ages between 5 to 6 years, from five schools for special needs, learning disability section, Cairo Governorate. The study used the quasi-empirical method, which depends on designing one group using the pre& post application measurements for the group to validate both, hypothesis and effectiveness of the program. The variables of the study were specified as follows; artistic formation program using Paper Mache as an independent variable, and its effect on the skills of kindergarten child with learning disabilities, as a dependent variable. The researchers utilized the application of an artistic formation program consisting of artistic and musical skills for kindergarten children with learning disabilities. The tools of the study, designed by the researchers, included: observation card used for recording the culling paper using pulp molding skills for kindergarten children with learning difficulties during practicing the artistic formation activity. Additionally, there was a program utilizing Artistic and Musical Activities for kindergarten children with learning disabilities to acquire educational concepts. The study was composed of 20 lessons for fine art activities and 20 lessons for musical activities, with obligation of giving the musical lesson with art lesson in one session to cast on the kindergarten child some educational concepts.

Keywords: musical activities, developing skills, early childhood, educational concepts, learning difficulties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
4347 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: G. Anugkakul, S. Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, Language Learning Strategy, Chinese Students, Gender.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
4346 Language Learning, Drives, and Context: A Grounded Theory of Learning Behavior

Authors: Julian Pigott

Abstract:

This paper presents the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.

Keywords: Drives, grounded theory, motivation, significant events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
4345 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Jackson A. Santos, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this paper. Behavior and learning of students of science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: Cell phone, digital micrographs, learning of sciences, teaching practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
4344 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach

Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li

Abstract:

Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.

Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
4343 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding

Authors: Mbainaibeye Jérôme, Noureddine Ellouze

Abstract:

We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.

Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
4342 Online Learning Activities Kit on Plants in Thai Literature in Compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn

Authors: Pornpapatsorn Princhankol, Kannika Udnunkarn

Abstract:

This research was aimed to develop and determine the quality of online learning activities kit as well as to examine the learning achievement of students and their satisfaction towards the kit through authentic assessment. The tools in this research contained online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, the assessment form, the learning achievement test, the satisfaction form and the authentic assessment form. The population consisted of 40 students in the second range of primary years (Prathomsuksa 4 to 6) at Ban Khao Rak School, Suratthani Province, Thailand. The research results showed that the content quality of the developed online learning activities kit as assessed by the experts was 4.70 on average or at very high level. The pre-test and post-test comparison was made to examine the learning achievement and it revealed that the post-test score was higher than the pre-test score with statistical significance at the .01 level. The satisfaction of the sampling group towards the online learning activities kit was 4.74 or at the highest level. The authentic assessment showed an average of 1.69 or at good level. Therefore, the online learning activities kit on plant in Thai literature in compliance with the School Botanical Garden of Plant Genetic Conservation Project under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn could be used in real classroom situations.

Keywords: Online learning activities kit, Plants in Thai literature, School Botanical garden

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
4341 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: M. M. Rahman, Md. Ashikur Rahman Khan, K. Kadirgama M. M. Noor, Rosli A. Bakar

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: Ti-6Al-4V, material removal rate, copper tungsten, positive polarity, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
4340 Design and Performance of Adaptive Polarized MIMO MC-SS-CDMA System for Downlink Mobile Communications

Authors: Joseph V. M. Halim, Hesham El-Badawy, Hadia M. El-Hennawy

Abstract:

In this paper, an adaptive polarized Multiple-Input Multiple-Output (MIMO) Multicarrier Spread Spectrum Code Division Multiple Access (MC-SS-CDMA) system is designed for downlink mobile communications. The proposed system will be examined in Frequency Division Duplex (FDD) mode for both macro urban and suburban environments. For the same transmission bandwidth, a performance comparison between both nonoverlapped and orthogonal Frequency Division Multiplexing (FDM) schemes will be presented. Also, the proposed system will be compared with both the closed loop vertical MIMO MC-SS-CDMA system and the synchronous vertical STBC-MIMO MC-SS-CDMA system. As will be shown, the proposed system introduces a significant performance gain as well as reducing the spatial dimensions of the MIMO system and simplifying the receiver implementation. The effect of the polarization diversity characteristics on the BER performance will be discussed. Also, the impact of excluding the cross-polarization MCSS- CDMA blocks in the base station will be investigated. In addition, the system performance will be evaluated under different Feedback Information (FBI) rates for slowly-varying channels. Finally, a performance comparison for vehicular and pedestrian environments will be presented

Keywords: Closed loop technique, MC-SS-CDMA, Polarized MIMO systems, Transmit diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
4339 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: Mobile learning, nursing institute, unified theory of acceptance and use of technology model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
4338 Resources-Based Ontology Matching to Access Learning Resources

Authors: A. Elbyed

Abstract:

Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.

Keywords: Resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
4337 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi

Abstract:

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
4336 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels

Authors: Jingwen Shan

Abstract:

In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.

Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
4335 Bridging the Gap Between CBR and VBR for H264 Standard

Authors: Othon Kamariotis

Abstract:

This paper provides a flexible way of controlling Variable-Bit-Rate (VBR) of compressed digital video, applicable to the new H264 video compression standard. The entire video sequence is assessed in advance and the quantisation level is then set such that bit rate (and thus the frame rate) remains within predetermined limits compatible with the bandwidth of the transmission system and the capabilities of the remote end, while at the same time providing constant quality similar to VBR encoding. A process for avoiding buffer starvation by selectively eliminating frames from the encoded output at times when the frame rate is slow (large number of bits per frame) will be also described. Finally, the problem of buffer overflow will be solved by selectively eliminating frames from the received input to the decoder. The decoder detects the omission of the frames and resynchronizes the transmission by monitoring time stamps and repeating frames if necessary.

Keywords: H264, CBR, VBR, Video Streaming, Digital Video, Multimedia, Buffering, Encoding, Decoding, Compression, Video-On-Demand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394