Search results for: Virtual Learning Environments
2002 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8102001 A Metametadata Architecture forPedagogic Data Description
Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah
Abstract:
This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.Keywords: Metadata, metametadata, semantic, ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142000 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes
Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini
Abstract:
Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of COVID-19 infection. Understanding novel treatment approaches is important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with VR included. This game-based VR technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with COVID-19 related CVA. The safety of developed instruments for such cases provides approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.
Keywords: COVID-19, stroke, virtual reality, rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4461999 The Use of Chlorophyll Meter Readings for the Selection of Maize Inbred Lines under Drought Stress
Authors: F. Gekas, C. Pankou, I. Mylonas, E. Ninou, E. Sinapidou, A. Lithourgidis, F. Papathanasiou, J. –K. Petrevska, F. Papadopoulou, P. Zouliamis, G. Tsaprounis, I. Tokatlidis, C. Dordas
Abstract:
The present study aimed to investigate whether chlorophyll meter readings (SPAD) can be used as criterion of singleplant selection in maize breeding. Experimentation was performed at the ultra-low density of 0.74 plants/m2 in order the potential yield per plant to be fully expressed. R-31 honeycomb experiments were conducted in three different areas in Greece (Thessaloniki, Giannitsa and Florina) using 30 inbred lines at well-watered and water-stressed conditions during the 2012 growing season. The chlorophyll meter readings had higher rates at dry conditions, except location of Giannitsa where differences were not significant. Genotypes of highest chlorophyll meter readings were consistent across areas, emphasizing on the character’s stability. A positive correlation between the chlorophyll meter readings and grain yield was strengthening over time and culminated at the physiological maturity stage. There was a clear sign that the chlorophyll meter readings has the potential to be used for the selection of stress-adaptive genotypes and may permit modern maize to be grown at wider range of environments addressing the climate change scenarios.
Keywords: Drought-prone environments, honeycomb breeding, SPAD, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28391998 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set
Authors: M. Santhalakshmi, P Suganthi
Abstract:
Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11291997 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30431996 Optimal Duty-Cycle Modulation Scheme for Analog-To-Digital Conversion Systems
Authors: G. Sonfack, J. Mbihi, B. Lonla Moffo
Abstract:
This paper presents an optimal duty-cycle modulation (ODCM) scheme for analog-to-digital conversion (ADC) systems. The overall ODCM-Based ADC problem is decoupled into optimal DCM and digital filtering sub-problems, while taking into account constraints of mutual design parameters between the two. Using a set of three lemmas and four morphological theorems, the ODCM sub-problem is modelled as a nonlinear cost function with nonlinear constraints. Then, a weighted least pth norm of the error between ideal and predicted frequency responses is used as a cost function for the digital filtering sub-problem. In addition, MATLAB fmincon and MATLAB iirlnorm tools are used as optimal DCM and least pth norm solvers respectively. Furthermore, the virtual simulation scheme of an overall prototyping ODCM-based ADC system is implemented and well tested with the help of Simulink tool according to relevant set of design data, i.e., 3 KHz of modulating bandwidth, 172 KHz of maximum modulation frequency and 25 MHZ of sampling frequency. Finally, the results obtained and presented show that the ODCM-based ADC achieves under 3 KHz of modulating bandwidth: 57 dBc of SINAD (signal-to-noise and distorsion), 58 dB of SFDR (Surpious free dynamic range) -80 dBc of THD (total harmonic distorsion), and 10 bits of minimum resolution. These performance levels appear to be a great challenge within the class of oversampling ADC topologies, with 2nd order IIR (infinite impulse response) decimation filter.
Keywords: Digital IIR filter, morphological lemmas and theorems, optimal DCM-based DAC, virtual simulation, weighted least pth norm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9331995 Promoting Complex Systems Learning through the use of Computer Modeling
Authors: Kamel Hashem, David Mioduser
Abstract:
This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.Keywords: Complexity, Educational technology, Learning by modeling, Mental models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721994 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28151993 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27101992 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8711991 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method
Authors: Zheng Zhang, Xin Chen, Guoqing Ding
Abstract:
Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441990 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.
Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131989 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49901988 Evaluation of Curriculum Quality of Postgraduate Studies of Actuarial Science Field at Public Universities of Iran
Authors: F. Havas Beigi, M. Vafaee Yeganeh, E. Mohammadi
Abstract:
Evaluation and survey of curriculum quality as one of the most important components of universities system is necessary for different levels in higher education. The main purpose of this study was to survey of the curriculum quality of Actuarial science field. Case: University of SHahid Beheshti and Higher education institute of Eco insurance (according to viewpoint of students, alumni, employers and faculty members). Descriptive statistics (mean, tables, percentage, and frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criteria considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. Content, teaching and learning methods, space and facilities, assessment of learning criteria were relatively desirable level, objectives and time criterions were desirable level. The quality of curriculum of Actuarial Science field was relatively desirable level.
Keywords: Quality, curriculum, Actuarial science, higher education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651987 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities
Authors: Sayed Hadi Sadeghi
Abstract:
This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.
Keywords: Support services, e-network practice, Australian universities, United States universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9871986 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window
Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi
Abstract:
In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31161985 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551984 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English
Authors: Adnan Z. Mkhelif
Abstract:
Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.
Keywords: Corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8681983 Architecting a Knowledge Theatre
Authors: David C. White
Abstract:
This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.Keywords: Knowledge, personal, open data, visualization, learning, teaching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13381982 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.
Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9701981 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471980 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201979 Deterioration of Groundwater in Arid Environments: What Impact in Oasis Dynamics? Case Study of Tafilalet, Morocco
Authors: W. EL Khoumsi, A. Hammani, M. Kuper, A. Bouaziz
Abstract:
Oases are complex and fragile agro-ecosystems. They have always existed in environments characterized by an arid climate, scarcity of rainfall, high temperatures and high evaporation. These palms have grown up despite the severity of the physical characteristics thanks to the water's existence and irrigation practice. The oases are generally spread along non-perennial rivers (wadis), shallow water table or deep artesian groundwater. However, the sustainability of oasis system is threatened by water scarcity and declining of water table levels particularly in arid areas. Located in the southern east area of Morocco, Tafilalet plain encompasses one of the largest palm groves in the kingdom. In recent years, this area has become increasingly threatened by water shortage and has seen a sharp deterioration under the effect of several combined anthropogenic and climatic factors. The Bayoud disease, successive years of drought, Hassan Addakhil dam construction etc are all factors that have affected both water and phoenicicole heritage of the area. The objective of this study is to understand the interaction between qualitative and quantitative degradation of groundwater resources, and the palm grove dynamics, while reviewing the assumption that groundwater resources contribute in a direct way to the conservation of this oasis agroecosystem. A historical analysis tracing both the oasis dynamics and the groundwater evolution has been established. Data were collected from satellite images, surveys with different actors (farmers, Regional Office for Agricultural Development, Basin agency...). They were complemented by a synthesis of numerous technical reports in the area. The results showed that within 40 years, the thickness of the groundwater table has dropped in 50 %. Along with this, there has been a downsizing of date palm by 50 %. Areas with higher groundwater level were the least affected by the downsizing. So we can say that the shallow groundwater contribute significantly and directly to the water supply of date palm through its root system, and largely ensures the oasis ecosystem sustainability.
Keywords: Oasis dynamics, Arid environments, Groundwater deterioration, Date palm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051978 Design and Performance of Adaptive Polarized MIMO MC-SS-CDMA System for Downlink Mobile Communications
Authors: Joseph V. M. Halim, Hesham El-Badawy, Hadia M. El-Hennawy
Abstract:
In this paper, an adaptive polarized Multiple-Input Multiple-Output (MIMO) Multicarrier Spread Spectrum Code Division Multiple Access (MC-SS-CDMA) system is designed for downlink mobile communications. The proposed system will be examined in Frequency Division Duplex (FDD) mode for both macro urban and suburban environments. For the same transmission bandwidth, a performance comparison between both nonoverlapped and orthogonal Frequency Division Multiplexing (FDM) schemes will be presented. Also, the proposed system will be compared with both the closed loop vertical MIMO MC-SS-CDMA system and the synchronous vertical STBC-MIMO MC-SS-CDMA system. As will be shown, the proposed system introduces a significant performance gain as well as reducing the spatial dimensions of the MIMO system and simplifying the receiver implementation. The effect of the polarization diversity characteristics on the BER performance will be discussed. Also, the impact of excluding the cross-polarization MCSS- CDMA blocks in the base station will be investigated. In addition, the system performance will be evaluated under different Feedback Information (FBI) rates for slowly-varying channels. Finally, a performance comparison for vehicular and pedestrian environments will be presentedKeywords: Closed loop technique, MC-SS-CDMA, Polarized MIMO systems, Transmit diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221977 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.
Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6911976 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871975 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5241974 Contribution for Rural Development through Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: Mobile-learning, organic farming, rural development, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20781973 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449