Search results for: Power System Control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11969

Search results for: Power System Control

11009 Calculation of Reorder Point Level under Stochastic Parameters: A Case Study in Healthcare Area

Authors: Serap Akcan, Ali Kokangul

Abstract:

We consider a single-echelon, single-item inventory system where both demand and lead-time are stochastic. Continuous review policy is used to control the inventory system. The objective is to calculate the reorder point level under stochastic parameters. A case study is presented in Neonatal Intensive Care Unit.

Keywords: Inventory control system, reorder point level, stochastic demand, stochastic lead time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
11008 A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

Authors: Yatin Wadhawan, Clifford Neuman, Anas Al Majali

Abstract:

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Keywords: Smart grid, resilience, gas pipeline, cyber-physical attack, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
11007 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System

Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang

Abstract:

In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
11006 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: Maximum power point tracking, neural networks, photovoltaic, P&O.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
11005 The Improved Biofuel Cell for Electrical Power Generation from Wastewaters

Authors: M. S. Kilic, S. Korkut, B. Hazer

Abstract:

Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2 and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system.

Keywords: Bilirubin oxidase, Enzymatic fuel cell, Glucose oxidase, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
11004 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
11003 Variation of Spot Price and Profits of Andhra Pradesh State Grid in Deregulated Environment

Authors: Chava Sunil Kumar, P.S. Subrahmanyan, J. Amarnath

Abstract:

In this paper variation of spot price and total profits of the generating companies- through wholesale electricity trading are discussed with and without Central Generating Stations (CGS) share and seasonal variations are also considered. It demonstrates how proper analysis of generators- efficiencies and capabilities, types of generators owned, fuel costs, transmission losses and settling price variation using the solutions of Optimal Power Flow (OPF), can allow companies to maximize overall revenue. It illustrates how solutions of OPF can be used to maximize companies- revenue under different scenarios. And is also extended to computation of Available Transfer Capability (ATC) is very important to the transmission system security and market forecasting. From these results it is observed that how crucial it is for companies to plan their daily operations and is certainly useful in an online environment of deregulated power system. In this paper above tasks are demonstrated on 124 bus real-life Indian utility power system of Andhra Pradesh State Grid and results have been presented and analyzed.

Keywords: OPF, ATC, Electricity Market, Bid, Spot Price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
11002 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3971
11001 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: Absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
11000 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing

Authors: M. Tamilarasi, T.G. Palanivelu

Abstract:

Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.

Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
10999 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire

Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz

Abstract:

This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.

Keywords: Fire for effect, application, fire control, interpolation method, software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
10998 Design of a Reduced Order Robust Convex Controller for Flight Control System

Authors: S. Swain, P. S. Khuntia

Abstract:

In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.

Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
10997 Generation Expansion Planning Strategies on Power System: A Review

Authors: V. Phupha, T. Lantharthong, N. Rugthaicharoencheep

Abstract:

The problem of generation expansion planning (GEP) has been extensively studied for many years. This paper presents three topics in GEP as follow: statistical model, models for generation expansion, and expansion problem. In the topic of statistical model, the main stages of the statistical modeling are briefly explained. Some works on models for GEP are reviewed in the topic of models for generation expansion. Finally for the topic of expansion problem, the major issues in the development of a longterm expansion plan are summarized.

Keywords: Generation expansion planning, strategies, power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
10996 Pilot Directional Protection Scheme Using Wireless Communication

Authors: Nitish Sharma, G. G. Karady

Abstract:

This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today’s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays.

Keywords: Smart grid protection, pilot protection, power system simulation, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
10995 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
10994 Fuzzy Logic Based Active Vibration Control of Piezoelectric Stewart Platform

Authors: Arian Bahrami, Mojtaba Tafaoli-Masoule, Mansour Nikkhah Bahrami

Abstract:

This paper demonstrates the potential of applying PD-like fuzzy logic controller for active vibration control of piezoelectric Stewart platforms. Through simulation, the control authority of the piezo stack actuators for effectively damping the Stewart platform vibration can be evaluated for further implementation of the system. Each leg of the piezoelectric Stewart platform consists of a linear piezo stack actuator, a collocated velocity sensor, a collocated displacement sensor and flexible tips for the connections with the two end plates. The piezoelectric stack is modeled as a bar element and the electro-mechanical coupling property is simulated using Matlab/Simulink software. Then, the open loop and closed loop dynamic responses are performed for the system to characterize the effect of the control on the vibration of the piezoelectric Stewart platform. A significant improvement in the damping of the structure can be observed by using the PD-like fuzzy controller.

Keywords: Active vibration control, Fuzzy controller, Piezoelectric stewart platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
10993 Neural Network Tuned Fuzzy Controller for MIMO System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.

Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191
10992 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: Power plant, Efficiency improvement, Carbon dioxide Emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
10991 Improving Image Quality in Remote Sensing Satellites using Channel Coding

Authors: H. M. Behairy, M. S. Khorsheed

Abstract:

Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.

Keywords: Image Transmission, Image Compression, Channel Coding, Error-Control Coding, DCT, Convolution Codes, Viterbi Algorithm, PCGC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
10990 Characterization of Extreme Low-Resolution Digital Encoder for Control System with Sinusoidal Reference Signal

Authors: Zhenyu Zhang, Qingbin Gao

Abstract:

Low-resolution digital encoder (LRDE) is commonly adopted as a position sensor in low-cost and resource-constraint applications. Traditionally, a digital encoder is modeled as a quantizer without considering the initial position of the LRDE. However, it cannot be applied to extreme LRDE for which stroke of angular motion is only a few times of resolution of the encoder. Besides, the actual angular motion is substantially distorted by this extreme LRDE so that the encoder reading does not faithfully represent the actual angular motion. This paper presents a modeling method for extreme LRDE by taking into account the initial position of the LRDE. For a control system with sinusoidal reference signal and extreme LRDE, this paper analyzes the characteristics of angular motion. Specifically, two descriptors of sinusoidal angular motion are studied, which essentially sheds light on the actual angular motion from extreme LRDE.

Keywords: Low resolution digital encoder, resource-constraint control system, sinusoidal reference signal, servo motion control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
10989 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih

Abstract:

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Keywords: PWR, ALOHA, habitability, Maanshan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
10988 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes

Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail

Abstract:

The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.

Keywords: PID, LQR, Two-wheels balancing robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5240
10987 Significant Role Analysis of Transmission Control Protocols in 4G Cellular Systems

Authors: Ghassan A. Abed, Bayan M. Sabbar

Abstract:

The society of 3rd Generation Partnership Project (3GPP) is completed developing Long Term Evolution Advanced (LTE-Advanced) systems as a standard 4G cellular system. This generation goals to produce conditions for a new radio-access technology geared to higher data rates, low latency, and better spectral efficiency. LTE-Advanced is an evolutionary step in the continuing development of LTE where the description in this article is based on LTE release 10. This paper provides a model of the traffic links of 4G system represented by LTE-Advanced system with the effect of the Transmission Control Protocols (TCP) and Stream Control Transmission Protocol (SCTP) in term of throughput and packet loss. Furthermore, the article presents the investigation and the analysis the behavior of SCTP and TCP variants over the 4G cellular systems. The traffic model and the scenario of the simulation developed using the network simulator NS-2 using different TCP source variants.

Keywords: LTE-Advanced, LTE, SCTP, TCP, 4G, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
10986 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Authors: Sidhartha Panda, N.P.Padhy

Abstract:

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
10985 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
10984 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
10983 Flexible Manufacturing System

Authors: Peter Kostal, Karol Velisek

Abstract:

Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.

Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4929
10982 Controllability of Efficiency of Antiviral Therapy in Hepatitis B Virus Infections

Authors: Shyam S.N. Perera

Abstract:

An optimal control problem for a mathematical model of efficiency of antiviral therapy in hepatitis B virus infections is considered. The aim of the study is to control the new viral production, block the new infection cells and maintain the number of uninfected cells in the given range. The optimal controls represent the efficiency of antiviral therapy in inhibiting viral production and preventing new infections. Defining the cost functional, the optimal control problem is converted into the constrained optimization problem and the first order optimality system is derived. For the numerical simulation, we propose the steepest descent algorithm based on the adjoint variable method. A computer program in MATLAB is developed for the numerical simulations.

Keywords: Virus infection model, Optimal control, Adjoint system, Steepest descent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
10981 A Proper Design of Wind Turbine Grounding Systems under Lightning

Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said

Abstract:

Lightning protection systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns are frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must taken into account. In this paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.

Keywords: WTs, LPS, GPR, Grounding System, Mitigating techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5212
10980 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

Authors: Ming-Tang Tsai, Chih-Wei Yen

Abstract:

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428