Search results for: Data envelopment analysis
12586 Data Gathering Protocols for Wireless Sensor Networks
Authors: Dhinu Johnson, Gurdip Singh
Abstract:
Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.Keywords: Data Centric Protocols, Shortest Paths, Sensor networks, Message passing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144812585 A Metric Framework for Analysis of Quality of Object Oriented Design
Authors: Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon
Abstract:
The impact of OO design on software quality characteristics such as defect density and rework by mean of experimental validation. Encapsulation, inheritance, polymorphism, reusability, Data hiding and message-passing are the major attribute of an Object Oriented system. In order to evaluate the quality of an Object oriented system the above said attributes can act as indicators. The metrics are the well known quantifiable approach to express any attribute. Hence, in this paper we tried to formulate a framework of metrics representing the attributes of object oriented system. Empirical Data is collected from three different projects based on object oriented paradigms to calculate the metrics.Keywords: Object Oriented, Software metrics, Methods, Attributes, cohesion, coupling, Inheritance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195012584 GIS-based Approach for Land-Use Analysis: A Case Study
Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.
Abstract:
Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161012583 A New Approaches for Seismic Signals Discrimination
Authors: M. Benbrahim, K. Benjelloun, A. Ibenbrahim, M. Kasmi, E. Ardil
Abstract:
The automatic discrimination of seismic signals is an important practical goal for the earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present new techniques for seismic signals classification: local, regional and global discrimination. These techniques were tested on seismic signals from the data base of the National Geophysical Institute of the Centre National pour la Recherche Scientifique et Technique (Morocco) by using the Moroccan software for seismic signals analysis.
Keywords: Seismic signals, local discrimination, regionaldiscrimination, global discrimination, Moroccan software for seismicsignals analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156212582 Toward an Architecture of a Component-Based System Supporting Separation of Non- Functional Concerns
Authors: Jerzy Nogiec, Kelley Trombly-Freytag, Shangping Ren
Abstract:
The promises of component-based technology can only be fully realized when the system contains in its design a necessary level of separation of concerns. The authors propose to focus on the concerns that emerge throughout the life cycle of the system and use them as an architectural foundation for the design of a component-based framework. The proposed model comprises a set of superimposed views of the system describing its functional and non-functional concerns. This approach is illustrated by the design of a specific framework for data analysis and data acquisition and supplemented with experiences from using the systems developed with this framework at the Fermi National Accelerator Laboratory.Keywords: Distributed system, component-based technology, separation of concerns, software development, supervisory and control, QoS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134412581 A Multi-Agent Framework for Data Mining
Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh
Abstract:
A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208212580 A Survey of the Applications of Sentiment Analysis
Authors: Pingping Lin, Xudong Luo
Abstract:
Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.Keywords: Natural language processing, sentiment analysis, application, online comments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96412579 Tools and Techniques in Risk Assessment in Public Risk Management Organisations
Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop
Abstract:
Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.
Keywords: Decision-making, public risk management organisations, risk assessment, tools and techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165712578 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA
Authors: Jianwei Wu
Abstract:
Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.
Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151012577 Interstate Comparison of Environmental Performance using Stochastic Frontier Analysis: The United States Case Study
Authors: Alexander Y. Vaninsky
Abstract:
Environmental performance of the U.S. States is investigated for the period of 1990 – 2007 using Stochastic Frontier Analysis (SFA). The SFA accounts for both efficiency measure and stochastic noise affecting a frontier. The frontier is formed using indicators of GDP, energy consumption, population, and CO2 emissions. For comparability, all indicators are expressed as ratios to total. Statistical information of the Energy Information Agency of the United States is used. Obtained results reveal the bell - shaped dynamics of environmental efficiency scores. The average efficiency scores rise from 97.6% in 1990 to 99.6% in 1999, and then fall to 98.4% in 2007. The main factor is insufficient decrease in the rate of growth of CO2 emissions with regards to the growth of GDP, population and energy consumption. Data for 2008 following the research period allow for an assumption that the environmental performance of the U.S. States has improved in the last years.
Keywords: Stochastic frontier analysis, environmental performance, interstate comparisons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171712576 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382312575 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially the fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, ma-chine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.
Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243512574 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143412573 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188212572 Downtrend Algorithm and Hedging Strategy in Futures Market
Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis
Abstract:
The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336612571 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183112570 AudioMine: Medical Data Mining in Heterogeneous Audiology Records
Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne
Abstract:
We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.
Keywords: Audiology, data mining, chi-squared, self-organizing maps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167912569 Exploring Social Impact of Emerging Technologies from Futuristic Data
Authors: Heeyeul Kwon, Yongtae Park
Abstract:
Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.
Keywords: Emerging technologies, futuristic data, scenario, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239512568 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network
Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev
Abstract:
The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.Keywords: Microarray, META-OFTEN, gene network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163112567 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load
Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz
Abstract:
The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.Keywords: Finite element beam model, Composite Beams, stability analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222612566 Reliability of Digital FSO Links in Europe
Authors: Zdenek Kolka, Otakar Wilfert, Viera Biolkova
Abstract:
The paper deals with an analysis of visibility records collected from 210 European airports to obtain a realistic estimation of the availability of Free Space Optical (FSO) data links. Commercially available optical links usually operate in the 850nm waveband. Thus the influence of the atmosphere on the optical beam and on the visible light is similar. Long-term visibility records represent an invaluable source of data for the estimation of the quality of service of FSO links. The model used characterizes both the statistical properties of fade depths and the statistical properties of individual fade durations. Results are presented for Italy, France, and Germany.
Keywords: Computer networks, free-space optical links, meteorology, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215712565 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance
Authors: Kitti Leangkrua
Abstract:
This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.Keywords: Asset management, risk-based maintenance, power transformer, health index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137112564 Fuzzy Types Clustering for Microarray Data
Authors: Seo Young Kim, Tai Myong Choi
Abstract:
The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152512563 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The National Football League (NFL) Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if these data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.
Keywords: National Football League, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4912562 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers
Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman
Abstract:
Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.
Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313212561 Prediction of Basic Wind Speed for Ayeyarwady
Authors: Chaw Su Mon
Abstract:
Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).
Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128512560 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118212559 Podemos Party Origin: From Social Protest to Spanish Parliament
Authors: Víctor Manuel Muñoz-Sánchez, Antonio Manuel Pérez-Flores
Abstract:
This paper analyzes the institutionalization of social protest in Spain. In the current crisis Podemos party seems to represent the political positions of the most affected citizens by the economic situation. It studies using quantitative techniques (statistical bivariate analysis), focusing on the exploitation of several bases of statistics data from the Center for Sociological and Research of Spanish Government, 15M movement characterization to its institutionalization in the Podemos party. Making a comparison between the participant's profile by the 15M and the social bases of Podemos votes. Data on the transformation of the socio-demographic profile of the fans, connoisseurs and 15M participants and voters are given.Keywords: Collective action, emerging parties, political parties, social protest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213312558 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201112557 Development of a Real-Time Energy Models for Photovoltaic Water Pumping System
Authors: Ammar Mahjoubi, Ridha Fethi Mechlouch, Belgacem Mahdhaoui, Ammar Ben Brahim
Abstract:
This purpose of this paper is to develop and validate a model to accurately predict the cell temperature of a PV module that adapts to various mounting configurations, mounting locations, and climates while only requiring readily available data from the module manufacturer. Results from this model are also compared to results from published cell temperature models. The models were used to predict real-time performance from a PV water pumping systems in the desert of Medenine, south of Tunisia using 60-min intervals of measured performance data during one complete year. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of performance of PV water pumping systems prediction models.Keywords: Temperature of a photovoltaic module, Predicted models, PV water pumping systems efficiency, Simulation, Desert of southern Tunisia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858