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Abstract—Environmental performance of the U.S. States is 

investigated for the period of 1990 – 2007 using Stochastic Frontier 
Analysis (SFA). The SFA accounts for both efficiency measure and 
stochastic noise affecting a frontier. The frontier is formed using 
indicators of GDP, energy consumption, population, and CO2 
emissions. For comparability, all indicators are expressed as ratios to 
total. Statistical information of the Energy Information Agency of the 
United States is used. Obtained results reveal the bell - shaped 
dynamics of environmental efficiency scores. The average efficiency 
scores rise from 97.6% in 1990 to 99.6% in 1999, and then fall to 
98.4% in 2007. The main factor is insufficient decrease in the rate of 
growth of CO2 emissions with regards to the growth of GDP, 
population and energy consumption. Data for 2008 following the 
research period allow for an assumption that the environmental 
performance of the U.S. States has improved in the last years. 
 
Keywords—Stochastic Frontier Analysis, Environmental 

Performance, Interstate Comparisons. 

I.  INTRODUCTION 
ITH environmental issues being among major concerns 
of contemporary society, decrease in the emissions of 
greenhouse gases is amid main issues of the Department 

of Energy of the United States (DOE) activity. Report [1] 
issued by the Energy Information Administration (EIA) states 
that total U.S. greenhouse gas emissions in 2008 were 2.2% 
below the 2007 total, declining from 7,209.8 million metric 
tons carbon dioxide equivalent (MMTCO2e) in 2007 to 
7,052.6 MMTCO2e in 2008. The drop was largely the result 
of the decrease in carbon dioxide (CO2) emissions.  Even in 
the presence of small percentage increases in emissions of 
other greenhouse gases, their absolute contributions to the 
change in total emissions were relatively small and were more 
than offset by the drop in CO2 emissions. The decrease in U.S. 
CO2 emissions in 2008 resulted primarily from economic 
contraction, lower demand for electricity along with lower 
carbon intensity of electricity supply, and higher energy 
prices. In this section below we follow [1] to describe the 
situation in more details and to stress the necessity of 
mathematical modeling of environmental performance aimed 
at its further improvement. We use statistical data provided by 
the EIA available on the web site http://www.eia.doe.gov and 
focus on the States of the U.S., the main level of governmental 
environmental legislation. 
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Carbon dioxide (CO2) is the most abundant human-caused 
greenhouse gas in the atmosphere. It constituted 82.7% of the 
total energy-related total U.S. greenhouse gas emissions in 
2008. Petroleum is the largest fossil fuel source constituting 
42% of total. Coal is the second-largest fossil fuel contributor 
at 37%. Natural gas has a carbon intensity of 55% of that for 
coal and 75% of the carbon intensity for petroleum. In 2008 it 
accounted for 28.5% of U.S. fossil energy use but only 21% of 
total energy-related CO2 emissions. Together with the 
observation that the U.S. can provide about 70% of its demand 
in natural gas on its own, relatively low carbon intensity of 
natural gas allows for its consideration as primary source of 
energy from fossil fuels in future. 

The largest source of all energy-related CO2 emissions is the 
electric power sector. Its share in total is 40.6%. The 
transportation sector is the second-largest source, at 33.1% of 
the total. Combustion of motor gasoline, diesel fuel, and jet 
fuel are main sources of CO2 emissions in this sector. In the 
residential and commercial sectors, the main sources of CO2 
emissions are heating processes that involve direct fuel use. 
These sectors account for 26.3% of total CO2 emissions. 

As stated in [1], the greenhouse gas intensity of the U.S. 
economy—measured as metric tons carbon dioxide equivalent 
(MTCO2e) emitted per million dollars of real gross domestic 
product (GDP)—fell by 2.6% from 2007 to 2008. It states also 
that based on 0.4% of economic growth and 2.2% decrease in 
total greenhouse gas emissions, the U.S. greenhouse gas 
intensity decreased in the period from 2007 to 2008. 
 The report [1] provides economic analysis of the factors of 
the decrease using factorial decomposition of the resulting 
indicator. The factorial decomposition methodology was 
invented in [2] and adapted to environmental issues in [3] 
referred to now in literature as Kaya identity. Publication [4] 
applies the Kaya identity to analysis of the U.S. energy sector. 
This identity is based on the following factorial 
decomposition:  

F = P· (G/P)· (E/G)· (F/E) = P· g· e· f ,          (1) 
where F stands for CO2 emissions, P is population, G is GDP, 
E is primary energy consumption, g= G/P is the per-capita 
GDP, e = E/G is the energy intensity of GDP, and f= F/E is 
the carbon intensity of energy. Upper- and lowercase symbols 
distinguish extensive and intensive variables. For analytical 
purposes, this identity may be compressed to three terms only 
by combining the product e · f into a new factor h: 

h = e · f = F/G,                       (2) 
carbon intensity of GDP. By doing so, the basic identity (1) 
takes a form 

F = P· (G/P)· (F/G) = P· g· h.                (3) 

W 
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The last identity is used in [1] for the following 
approximation: 
   %ΔF ≈ %ΔP + %Δg + %Δh,               (4) 

where combination of symbols %Δ represents percentage 
change. The last equation may be interpreted as follows, [1]: 

%ΔCO2 ≈  %ΔGDP + %Δ (Energy/GDP)+  
%Δ (CO2/Energy).               (5) 

When applied to the data of 2000 – 2008, this equation reveals 
that energy intensity of GDP (Energy/GDP) has gone down in 
every year since 2000. The carbon intensity of the energy 
supply (CO2/Energy) has gone down in some years and up in 
others. The GDP growth was positive in all years from 2000 
through 2008, but has varied. As a result, in 2008, economic 
growth was low (0.4%) coupled with decreases in both energy 
intensity (-2.5%) and carbon intensity of energy (-0.8%). This 
interplay of the factors has lead to a 2.9% decline in energy-
related CO2 emissions from 2007 to 2008. 
 Publication [1] mentions findings that the six key 
greenhouse gases (GHGs), with CO2 being the main, pose a 
threat to public health and welfare for current and future 
generations. It was stated also that GHG emissions from new 
motor vehicles and motor vehicle engines contribute to 
climate change. As the result, the U.S. Environmental 
Protection Agency (EPA) was authorized to request the 
mandatory reporting the GHGs emissions from 31 different 
source categories. It is expected that 80% - 85% of total U.S. 
GHG emissions from 10,000 facilities will be covered in the 
reports. Expectedly, they will allow for the development of 
operational and strategic measures aimed at the decrease in the 
negative effect of GHG emissions. The monitoring begins in 
January 2010 with first reports due in 2011. 

The EPA drafted the Prevention of Significant Deterioration 
/ Title V Greenhouse Gas Tailoring Rule that limits the 
applicability of CO2 emissions standards to new and modified 
stationary sources only those emitting more than 25,000 
MTCO2e annually. By doing so, the EPA expects provision of 
operating permits to about 14,000 large industrial sources, 
which are responsible for nearly 70 percent of U.S. GHG 
emissions: power plants, refineries, and other large industrial 
operations. The EPA and the U.S. Department of 
Transportation (DOT) jointly proposed new nationwide 
standards for corporate average fuel economy (CAFE) and 
GHG emissions standards for new light- and medium-duty 
vehicles. The proposal imposes nationwide the GHG standards 
sought by California.  
 In 2009,  the EPA published a Standard (RFS2) that requires 
the establishment of  new standards for cellulosic biofuel, 
biomass-based diesel, advanced biofuels, and total renewable 
fuel for use in transportation. The proposed standard includes 
definitions and criteria for both renewable fuels and the 
feedstocks used to produce them. It includes, in particular, the 
guidelines on how life-cycle emissions from each type of 
renewable fuel would be calculated. It proposes a method of 
life-cycle accounting including GHG emissions from 
production and transport, land use change, production, 
distribution, and blending of the renewable fuel. 

The U.S. House of Representatives passed The American 
Clean Energy and Security Act of 2009 (ACESA). It includes 
a “cap-and-trade” program effective 2012.  The Act requires 
that by 2020 total GHG emissions be 17% and by 2050 83% 

below the 2005 levels. It also includes provisions for funding 
for carbon capture and sequestration projects, standards and 
programs designed to increase in energy efficiency, and 
energy efficiency standards for 2020.  

At the State – level, the nation – wide initiatives of the U.S. 
Federal Government were supported and further developed. 
California imposed a fee on carbon emissions in 2009. Five 
auctions of CO2 emissions allowances were held by 2009, 
with approximately 90 million allowances being sold. They 
generated more than $432.8 million aimed to be used by the 
participating States for energy efficiency and renewable 
energy programs. The Western Climate Initiative (WCI) 
continues development of the comprehensive regional market 
- based cap - and-trade program that seeks to reduce emissions 
across participating States. Its objective is to launch the 
emissions trading system in 2012. Participating U.S. States 
include Arizona, California, Montana, New Mexico, Oregon, 
Utah, and Washington. The Midwestern Greenhouse Gas 
Reduction Accord (MGGRA) released draft recommendations 
for a regional cap – and - trade program. Sectors for which 
emission caps are proposed include electricity generation and 
imports, industrial combustion and process sources, 
transportation fuels, and residential, commercial, and 
industrial fuels. It is proposed that about 33% of allowances be 
auctioned initially, with the remainder sold for a small fee. 
The program would transition to full auction over time. 
Member States include Iowa, Illinois, Kansas, Michigan, 
Minnesota, and Wisconsin.  
 An approach suggested in this paper below allows for the 
estimation of the combined effect of all these undertakings. It 
models the objectively needed amounts of the CO2 emissions 
(the frontier) based on GPD, energy consumption, and 
population of the states, and weights the frontier amounts of 
CO2 emissions against their actual amounts as their ratio. As a 
result, it produces an environmental efficiency score that  
measures the environmental performance of the U.S. States.  

The obtained results reveal the dynamics of the States’ 
environmental efficiency scores and allow for the evaluation 
of the trends in the environmental performance. 

II. METHODOLOGY 
Methodology of the research in this paper is Stochastic 

Frontier Analysis (SFA). The SFA was developed in [5, 6] and 
is designed to separate actual inefficiency from the 
advantageous or disadvantageous impact of stochastic noise, 
considered an exogenous factor. The initial version of SFA 
was restricted to finding average efficiency in a group only. 
Later, publications [7, 8] revealed the opportunities for 
individualizing of the stochastic efficiency scores. At present, 
SFA is a well-established and widely used research tool. 
Monograph [9] provides a comprehensive review of its 
contemporary state. 

SFA considers either production or cost function as a 
frontier subject to stochastic noise. It was a breakthrough for 
the SFA to assume that these functions pertain to frontier 
performance rather than describe a fully efficient mode of 
operation of actual objects. Deviation from the frontier is due 
to two factors: inefficiency and stochastic noise. The former is 
manageable; the latter is exogenous. Separation of the two 
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factors allows for more precise estimation of inefficiency, 
because the exogenous factor may be eliminated by using the 
maximum likelihood method described in [10]. In fact, this 
feature provides the main potential advantage of SFA over the 
Data Envelopment Analysis (DEA), [11]. The DEA measures 
efficiency by using deterministic frontier only and thus, 
ignores stochastic noise.   

Below, we focus only on the cost function and follow the 
description of SFA provided by [9] and [12]. SFA considers 
objects producing outputs by using a vector of inputs x. The 
best possible practice is determined by a deterministic cost 
frontier g(β, x), where β represents a vector of unknown 
parameters. The frontier is subject to stochastic fluctuations, 
and the actual objects are not fully efficient in the sense that 
actual cost of their outputs isgreater than that given by the 
stochastic frontier.  Usually, it is assumed that the function 
g(β,x) is the Cobb–Douglas function or the transcendental 
logarithmic (translog) function. We use the latter below. It is 
also typical for SFA to use data in logarithmic form. In light of 
these practices, the SFA cost frontier model may be presented 
as  

itVitU
itit exgy +⋅= ),(β ,                   (6) 

or in logarithmic form as  

ln yit  =  ln g(β, xit) +(Vit + Uit) ,               (7) 
where  i = 1,…,I stands for the object, and t = 1,…,T, for the 
time period; yit is the cost of production; Vit are random 
variables corresponding to stochastic noise; and Uit, 
nonnegative random variables associated with the inefficiency 
of an object i at time period t. In this paper, the random 
variables Vit and Uit are considered to be independent of each 
other. Each of them is also assumed to be identically 
distributed and independent for different objects or periods of 
time. Random variables Vit, stochastic noise, are usually 
considered to be normally distributed with zero mean and 
unknown dispersion N(0, σv

2). Random variables Uit, 
associated with nonnegative inefficiency, are usually 
considered to have a half-normal, truncated normal, 
exponential, or gamma distribution with unknown parameters. 
Dispersions may or may not depend on a specific object or 
time (heteroskedastic or homoskedastic models, respectively). 
In this paper, we assume that the dispersions σv

2 and σu
2 are 

the same for all objects and time periods. Following [12], we 
consider a model with the mean value of Uit depending on 
time. 
 SFA models may be estimated for one period of time (cross-
sectional models) or for a series of periods of time (panel 
data). The SFA literature shows that panel data models have 
better statistical properties. Analytically, parameters of the 
SFA models are estimated in three steps. At the first step, 
parameters of the deterministic component of the stochastic 
frontier are evaluated by using an appropriate modification of 
the least-squares method. Residuals obtained at the first step 
represent observed values of the random variable itε , the sum 
of the two random components U and V: 

  itε = Vit + Uit                        (8) 
At the second step, parameters of the distribution of U and V 

are found analytically or numerically by using the maximum 

likelihood method; see [10] for details. The main idea of the 
maximum likelihood method is to find the values of the 
parameters that maximize the probability density function 
conditioned on observed data. Different statistical hypotheses 
may be tested, and the values of the previously found 
parameters may be corrected. At the third step, parameters of 
the conditional distribution of the inefficiency component Uit 
are calculated, conditioned on the observed values of the 
corresponding random variable εit , as suggested in [7] and [8]: 

)(
),(

)|(
it

itit
itit f

Uf
Uf

ε
ε

ε = ,                 (9) 

where functions f( ) stand for corresponding probability 
density functions. The term itε may or may not depend on 
the object or the time. Efficiency scores are usually defined 
either as an exponent of the conditional expectation of the 
random variable Uit,  
 )|( ititUE

it eTE ε−= ,                   (10) 
or as an expectation of the conditional exponent, 
  ( )it

itU
it eETE ε|−= .                 (11) 

Monograph [9] argues that the latter is preferable; we have 
used it in this paper.   

Different modifications of this procedure are known in the 
literature, but the main component is always a solution of an 
optimization problem related to the maximum likelihood 
method. In some cases, an analytical solution may be 
obtained, but it is more typical for SFA applications to use 
computer software. Several software products are available for 
this purpose. Article [13] furnishes a review of the most 
popular products – FRONTIER [14], and LIMDEP [15]. We 
have used the former for the calculations in this paper. 

 The application of SFA to environmental performance is 
considered in [15, 16, 17]. It may be noted that no insuperable 
barrier separates DEA and SFA. Publications [18, 19, 20] 
show that the SFA technique may be incorporated into DEA. 
To do this, the DEA frontier should be considered as an 
estimate for the deterministic component of the SFA frontier. 
We do not use this approach in this paper. 

III. STATISTICAL DATA AND MATHEMATICAL MODEL 
In this section, we present statistical data and SFA model of 

environmental efficiency used in this paper. Our main source 
of statistical information was the EIA web site 
www.doe.eia.gov. The site provides data for GDP, population, 
total primary energy consumption, and carbon dioxide 
emissions for the period 1990–2007. For comparability, we 
have transformed the data into the ratios to the U.S. total. 
Ratios corresponding to CO2 emissions for 2006 and 2007 
were obtained by parabolic extrapolation. The objects under 
investigation in our study are the States of the U.S. The States 
are very different in all of the parameters: GDP, population, 
energy consumption, and CO2 emissions. Table 1 provides an 
example of the data for 2007 for selected States: 
California(CA), Connecticut (CT), New York (NY), and 
Texas (TX). As follows from this table, big States like CA,  
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TABLE 1 
DATA FOR SELECTED STATES, 2007, % OF TOTAL 

State CO2
a Energy 

Consumption GDP  Population 

CA 6.49 8.44 13.20 12.11 
CT 0.80 0.85 1.54 1.17 
NY 3.78 4.01 8.06 6.45 
TX 8.63 11.66 8.37 7.91 

a.Extrapolated      
and TX, coexist with much smaller ones, like CT. Table 2 
presents data on carbonization ratios for these states (value of 
1.00 corresponds to the U.S. average).  

TABLE II 
CARBONIZATION RATIOS                  

FOR SELECTED STATES, 2007 

State CO2 / 
GDP 

CO2/ Energy 
Consumption 

CO2 / 
Population 

CA 0.49 0.77 0.54 
CT 0.52 0.94 0.68 
NY 0.47 0.94 0.59 
TX 1.03 0.74 1.09 

As may be seen from this table, CA is a very “clear” state, 
while TX is above the average in two indicators out of three. 
Energy carbonization ratio is independent from other two: TX 
has better level of 0.74 than CA’s 0.77. Both CT and NY have 
higher levels of energy carbonization (0.94 for both) though 
they are also below the U.S. average.  

It is worth noting that large GDP, population, or even 
energy consumption, may or may not lead to correspondingly 
large carbon dioxide emissions ratios. Such interplay of the 
factors demonstrates the need for mathematical modeling of 
the environmental performance of the States’ economies 
aimed at determining those that are not sufficiently 
environmentally efficient. These states should increase their 
environmental performance in the overall perspective. 

For our application of SFA, we used a model suggested in 
[12] and well adapted to the objectives of this paper. The 
resulting indicator is CO2 emissions. The frontier is formed by 
the indicators of GDP, energy consumption, and population 
and total energy consumption, all expressed as ratios to the 
U.S. total. The rationale underlying the choice of the 
indicators is an assumption that a State that has population 
greater than the U.S. average, is economically more active (as 
measured by the GDP ratio), or is objectively energy intensive 
may be allowed to emit proportionally greater share of CO2. 
For our calculations, we used the cost function translog model: 

Ln Zit = β0 + β1·ln r1it +β2·ln r2 it + β3·ln r3it +β4· (ln r1it)2+ 

β5· (ln r2it)2 +β6· (ln r3it)2 +β7·ln r1it · ln r2it + 

β8·ln r1it · ln r3it + β9·ln r2it · ln r3it + (Vit + Uit),  (12)  

where i stands for a state; t, for a period of time; r1, r2 , and r3 
for the ratios of energy consumption, GDP, and population, 
respectively, all expressed as ratios to the U.S. totals; Vit= 
N(0,σv2) is a normally distributed random variable; and 
Uit=|N(zit,σu

2)| is a nonnegative, half-normally distributed 
random variable intended to account for technical inefficiency. 
Random variables Uit and Vit corresponding to different states 
or periods of time are assumed to be independent and to have 

parameters that are neither object nor time specific. The 
mathematical expectation of Uit is assumed to be a quadratic 
function of time: 

E(Uit) = zit =βi+δ1i·t+δ2i·t2,                (13) 
where E stands for mathematical expectation. For our 
calculations, we used the FRONTIER 4.1 software developed 
in [14]. 

IV. RESULTS AND DISCUSSION 

For the period of investigation from 1990 through 2007, the 
efficiency scores ranged from 97.35% to 99.62% with 
standard deviation of 0.54%. Table 3 and Fig. 1 present 
average efficiency scores calculated by years.   

TABLE  III 
AVERAGE EFFICIENCY 

SCORES, % 
Year Score Year Score 
1990 97.56 1999 99.60 
1991 98.55 2000 99.59 
1992 99.03 2001 99.57 
1993 99.28 2002 99.54 
1994 99.42 2003 99.48 
1995 99.50 2004 99.39 
1996 99.55 2005 99.23 
1997 99.58 2006 98.94 
1998 99.59 2007 98.36 
Min 97.56 Max 99.59 

 

 
Fig. 1. Average efficiency scores, % 

 
In spite of the differences in both the size of economies and 
their specialization, all States revealed very similar dynamics 
of efficiency scores. In our opinion, it is the result of similarity 
in the market forces and States’ and Federal environmental 
policies and regulations.  
 As follows from the presented data, efficiency scores follow 
the bell – shaped pattern. They are on the rise from 1990 
(97.56%) through 1999 (99.60%), and then, on the decline to 
98.36% in 2007. To provide explanations to this pattern of 
change, we analyzed the rates of growth of all of the ratios 
included in the model. Obtained results are shown in table 4. 
As follows from the table, the average rates of growth of all 
factors of the CO2 emissions are lower in the period of 2000 – 
2007, together with the average rate of growth of the CO2 
emissions itself. However, the decrease in the rate of growth 
of the CO2 emissions was insufficient to offset the growth in 
GDP, population, and energy consumption and thus, to 
provide increase in the environmental efficiency. This 
observation stresses the importance of setting restrictions on 

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:4, No:6, 2010 

599International Scholarly and Scientific Research & Innovation 4(6) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
co

no
m

ic
s 

an
d 

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

6,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

14
9.

pd
f



 
TABLE IV 

AVERAGE RATES OF GROWTH, % 
  1990 - 1999 2000 - 2007 
GDP 5.52 5.12 
Population 1.25 0.96 
Energy consumption 1.50 0.60 
CO2 emissions 2.69 1.87 

 
the absolute amounts of the greenhouse gas emissions. 
Restrictions set on their rates of growth may or may not be 
sufficient. Mathematical models, like the one presented in this 
paper, can provide a solution to the problem in cases when 
decrease in the quantity of the emissions is not feasible. In 
such situations, the models can be used to compute different 
scenarios of restrictions on the rates of growth that result in 
the increase of the environmental performance.  

V. CONCLUSIONS 
An SFA translog model is suggested as a means of 

comparative evaluation of environmental performance of the 
U.S. States. A ratio – based model is used with mathematical 
expectation of the inefficiency term being a quadratic function 
of time. Inclusion of time in the model allows for the 
investigation of efficiency dynamics. Environmental 
efficiency of the U.S. States was analyzed using suggested 
approach for the period of 1990 – 2007. Obtained results 
reveal similarity in the dynamics of States’ efficiency scores 
and the bell - shaped change in time. After the steady rise of 
the average scores from 97.6% in 1990 to 99.6% in 1999, they 
fell to 98.4% in 2007. Comparative analysis of the rates of 
growth allows for the assumption that the main factor of the 
decrease in environmental efficiency is insufficient decrease in 
the rate of growth of CO2 emissions needed offset the rates of 
growth of GDP, population and energy consumption. Data for 
2008, the year following the research period, allow for 
assumption that environmental performance of the U.S. States 
has improved in 2008 and the last years. The suggested model 
may be used for environment – related research and policy – 
making as a means for investigation or strategic regulation of 
CO2 emissions. In particular, it may be used as a tool for the 
cap-and-trade regulatory system.  
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