Search results for: structural and thermal analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10237

Search results for: structural and thermal analysis

9307 Investigation of the Effect of Number of Story on Different Structural Components of RC Building

Authors: Zasiah Tafheem, Mahadee Hasan Shourav, Zahidul Islam, Saima Islam Tumpa

Abstract:

The paper aims at investigating the effect of number of story on different structural components of reinforced concrete building due to gravity and lateral loading. For the study, three building models having same building plan of three, six and nine stories are analyzed and designed using software package. All the buildings are residential and are located in Dhaka city of Bangladesh. Lateral load including wind and earthquake loading are applied to the building along both longitudinal and transverse direction as per Bangladesh National Building Code (BNBC, 2006). Equivalent static force method is followed for the applied seismic loading. The present study investigates as well as compares mainly total steel requirement in different structural components for those buildings. It has been found that total longitudinal steel requirement for beams at each floor is 48.57% for three storied building, 61.36% for six storied building when the total percentage is taken as 100% in case of nine storied building. For an exterior column, the steel ratio is 2.1%, 3.06%, 4.55% for three, six and nine storied building respectively for the first three floors. In addition, it has been noted that total weight of longitudinal reinforcement of an interior column is 14.02 % for threestoried building and 43.12% for six storied building when the total reinforcement is considered 100% for nine storied building for the first three floors.

Keywords: Equivalent Static Force Method, longitudinal reinforcement, seismic loading, steel ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
9306 Magnesium Borate Synthesis by Microwave Method Using MgCl2.6H2O and H3BO3

Authors: A. S. Kipcak, P. Gurses, K. Kunt, E. Moroydor Derun, S. Piskin

Abstract:

There are many kinds of metal borates found not only in nature but also synthesized in the laboratory such as magnesium borates. Due to its excellent properties, as remarkable ceramic materials, they have also application areas in anti-wear and friction reducing additives as well as electro-conductive treating agents. The synthesis of magnesium borate powders can be fulfilled simply with two different methods, hydrothermal and thermal synthesis. Microwave assisted method, also another way of producing magnesium borate, can be classified into thermal synthesis because of using the principles of solid state synthesis. It also contributes producing particles with small size and high purity in nano-size material synthesize. In this study the production of magnesium borates, are aimed using MgCl2.6H2O and H3BO3. The identification of both starting materials and products were made by the equipments of, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). After several synthesis steps magnesium borates were synthesized and characterized by XRD and FT-IR, as well.

Keywords: FT-IR, magnesium borates, microwave method, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
9305 Stress Variation of Underground Building Structure during Top-Down Construction

Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung

Abstract:

In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.

Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
9304 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios

Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong

Abstract:

This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.

Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
9303 Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger

Authors: Mohamed Essahafi, Mustapha Ait Lafkih

Abstract:

In industrial environments, the heat exchanger is a necessary component to any strategy of energy conversion. Much of thermal energy used in industrial processes passes at least one times by a heat exchanger, and methods systems recovering thermal energy. This survey paper tries to presents in a systemic way an sample control of a heat exchanger by comparison between three controllers LQR (linear quadratic regulator), PID (proportional, integrator and derivate) and Pole Placement. All of these controllers are used mainly in industrial sectors (chemicals, petrochemicals, steel, food processing, energy production, etc…) of transportation (automotive, aeronautics), but also in the residential sector and tertiary (heating, air conditioning, etc...) The choice of a heat exchanger, for a given application depends on many parameters: field temperature and pressure of fluids, and physical properties of aggressive fluids, maintenance and space. It is clear that the fact of having an exchanger appropriate, well-sized, well made and well used allows gain efficiency and energy processes.

Keywords: LQR linear-quadratic regulator, PID control, Pole Placement, Heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4395
9302 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
9301 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
9300 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures

Authors: Réka Sárközi, Péter Iványi, Attila B. Széll

Abstract:

The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.

Keywords: Parametric design, structural morphology, space structures, spherical coordinate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
9299 Stabilization of Steel Beams of Monosymmetric Thin-Walled Cross-Section by Trapezoidal Sheeting

Authors: Ivan Balázs, Jindřich Melcher

Abstract:

Steel thin-walled beams have been widely used in civil engineering as purlins, ceiling beams or wall substructure beams. There are often planar members such as trapezoidal sheeting or sandwich panels used as roof or wall cladding fastened to the steel beams. The planar members also serve as stabilization of thin-walled beams against buckling due to loss of stability. This paper focuses on problem of stabilization of steel monosymmetric thin-walled beams by trapezoidal sheeting. Some factors having influence on overall behavior of this structural system are investigated using numerical analysis. Thin-walled beams in bending stabilized by trapezoidal sheeting are of primarily interest of this study.

Keywords: Beam, buckling, numerical analysis, stability, steel structures, trapezoidal sheeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
9298 Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

Authors: Bakare Babatunde Femi

Abstract:

Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This paper presents an overview of these two pretreatment methods describing their benefits and laboratory scale reactors that simulate landfill conditions were constructed in order to compare emissions in terms of biogas production and leachate contamination between untreated Municipal Solid Waste and Mechanical Biological Pretreated waste. The findings of this study showed that Mechanical Biological pretreatment of waste reduces the emission level of waste and the benefit over the landfilling of untreated waste is significant.

Keywords: emissions, mechanical biological pretreatment, MSW, thermal pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
9297 Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

Authors: Jindrich J. Melcher, Marcela Karmazínová

Abstract:

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.

Keywords: Atmospheric physical effect, building component, experiment, fiber-cement, glass-fiber-concrete, simulation, static behavior, test, warming, water sprinkling, weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
9296 Characterisation of Fractions Extracted from Sorghum Byproducts

Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.

Keywords: Alkaline extraction, bran, cellulose, hemicellulose, lignin, sorghum, stalk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
9295 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Finite element method, geometrical nonlinearity, bistable, quadrilateral plate elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
9294 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: Oil palm, image processing, disease, leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
9293 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
9292 Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

Keywords: Exergy analysis, desalination, solar, humidifier, condenser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
9291 A Study of the Role of Perceived Risk and User Characteristics in Internet Purchase Intention

Authors: Ali Hajiha, Farhad Ghaffari, Nooshin Gholamali Tehrani

Abstract:

This study aims at investigating the empirical relationships between risk preference, internet preference, and internet knowledge which are known as user characteristics, in addition to perceived risk of the customers on the internet purchase intention. In order to test the relationships between the variables of model 174, a questionnaire was collected from the students with previous online experience. For the purpose of data analysis, confirmatory factor analysis (CFA) and structural equation model (SEM) was used. Test results show that the perceived risk affects the internet purchase intention, and increase or decrease of perceived risk influences the purchase intention when the customer does the internet shopping. Other factors such as internet preference, knowledge of the internet, and risk preference affect the internet purchase intention.

Keywords: Perceived risk, Internet preference, Internetknowledge, Risk preference, Internet purchase intention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
9290 Titanium-Aluminum Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.

Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
9289 The Impact of an Air-Supply Guide Vane on the Indoor Air Distribution

Authors: C.-C. Tsao, S.-W. Nien, W.-H. Chen , Y.-C. Shih

Abstract:

Indoor air distribution has great impact on people-s thermal sensation. Therefore, how to remove the indoor excess heat becomes an important issue to create a thermally comfortable indoor environment. To expel the extra indoor heat effectively, this paper used a dynamic CFD approach to study the effect of an air-supply guide vane swinging periodically on the indoor air distribution within a model room. The numerical results revealed that the indoor heat transfer performance caused by the swing guide vane had close relation with the number of vortices developing under the inlet cold jet. At larger swing amplitude, two smaller vortices continued to shed outward under the cold jet and remove the indoor heat load more effectively. As a result, it can be found that the average Nusselt number on the floor increased with the increase of the swing amplitude of the guide vane.

Keywords: Computational Fluid Dynamics (CFD), dynamic mesh, heat transfer, indoor air distribution, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
9288 Assessing the Effects of Explosion Waves on Office and Residential Buildings

Authors: Mehran Pourgholi , Amin Lotfi Eghlim

Abstract:

Explosions may cause intensive damage to buildings and sometimes lead to total and progressive destruction. Pressures induced by explosions are one of the most destructive loads a structure may experience. While designing structures for great explosions may be expensive and impractical, engineers are looking for methods for preventing destructions resulted from explosions. A favorable structural system is a system which does not disrupt totally due to local explosion, since such structures sustain less loss in comparison with structural ones which really bear the load and suddenly disrupt. Designing and establishing vital and necessary installations in a way that it is resistant against direct hit of bomb and rocket is not practical, economical, or expedient in many cases, because the cost of construction and installation with such specifications is several times more than the total cost of the related equipment.

Keywords: Explosion Waves, explosion load, Office, Residential Buildings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
9287 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers

Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho

Abstract:

In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.

Keywords: Plate heat exchanger, optimization, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
9286 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: M. Barański

Abstract:

This article presents a vibration diagnostic method designed for Permanent Magnets (PM) electrical machines–traction motors and generators. Those machines are commonly used in traction drives of electrical vehicles and small wind or water systems. The described method is very innovative and unique. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analyzed number of publications, which describe vibration diagnostic methods, and tests of electrical machines and there was no method found to determine the technical condition of such machine basing on their own signals. This work presents field-circuit model, results of static tests, results of calculations and simulations.

Keywords: Electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity, diagnostics, data acquisition, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
9285 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: Earthquake disaster, spatial statistical analysis, principle components analysis, clustered patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
9284 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
9283 A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode

Authors: Kemal Çomakli, Uğur Çakir

Abstract:

This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.

Keywords: Air source heat pump, Energy Analysis, Heat Pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
9282 Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel

Authors: Yong-Hui Li, Jing-Wen Huang

Abstract:

As the advancement of technology, online shopping channel develops rapidly in recent years. According to the report of Taiwan Network Information Center, there are almost eighty percents of internet population shopping in online channel. Synthesizing insights from the previous research, this study develops the conceptual model to integrate Theory of Perceived Risk (TPR) and Technology Acceptance Model (TAM) to apply in online shopping. Using data collected from 637 respondents from online survey website, we use structural equation modeling to test measurement and structural models. The results suggest the need for consideration of perceived risk as an antecedent in the Technology Acceptance Model. The limitations and implications are discussed.

Keywords: perceived risk, perceived usefulness, perceived ease of use, behavioral intention, actual purchase behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6437
9281 Dynamic Economic Dispatch Using Glowworm Swarm Optimization Technique

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper gives an intuition regarding glowworm swarm optimization (GSO) technique to solve dynamic economic dispatch (DED) problems of thermal generating units. The objective of the problem is to schedule optimal power generation of dedicated thermal units over a specific time band. In this study, Glowworm swarm optimization technique enables a swarm of agents to split into subgroup, exhibit simultaneous taxis towards each other and rendezvous at multiple optima (not necessarily equal) of a given multimodal function. The feasibility of the GSO method has been tested on ten-unit-test systems where the power balance constraints, operating limits, valve point effects, and ramp rate limits are taken into account. The results obtained by the proposed technique are compared with other heuristic techniques. The results show that GSO technique is capable of producing better results.

Keywords: Dynamic economic dispatch, Glowworm swarm optimization, Luciferin, Valve–point loading effect, Ramp rate limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
9280 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: Numerical modeling, open pit mine, shear zone, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
9279 Design and Evaluation of a Pneumatic Muscle Actuated Gripper

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

Deployment of pneumatic muscles in various industrial applications is still in its early days, considering the relative newness of these components. The field of robotics holds particular future potential for pneumatic muscles, especially in view of their specific behaviour known as compliance. The paper presents and discusses an innovative constructive solution for a gripper system mountable on an industrial robot, based on actuation by a linear pneumatic muscle and transmission of motion by gear and rack mechanism. The structural, operational and constructive models of the new gripper are presented, along with some of the experimental results obtained subsequently to the testing of a prototype. Further presented are two control variants of the gripper system, one by means of a 3/2-way fast-switching solenoid valve, the other by means of a proportional pressure regulator. Advantages and disadvantages are discussed for both variants.

Keywords: Gripper system, pneumatic muscle, structural modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
9278 Risk Management Analysis: An Empirical Study Using Bivariate GARCH

Authors: Chin Wen Cheong

Abstract:

This study employs a bivariate asymmetric GARCH model to reveal the hidden dynamics price changes and volatility among the emerging markets of Thailand and Malaysian after the Asian financial crisis from January 2001 to December 2008. Our results indicated that the equity markets are sharing the common information (shock) that transmitted among each others. These empirical findings are used to demonstrate the importance of shock and volatility dynamic transmissions in the cross-market hedging and market risk.

Keywords: multivariate ARCH, structural change, value at risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418