Search results for: Flow control valves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5706

Search results for: Flow control valves

4776 Integral Tracking Control for a Piezoelectric Actuator System

Authors: J. H. Park, S. C. Jeong, J. H. Koo, H. Y. Jung, S. M. Lee

Abstract:

We propose an integral tracking control method for a piezoelectric actuator system. The proposed method achieves the output tracking without requiring any hysteresis observer or schemes to compensate the hysteresis effect. With the proposed control law, the system is converted into the standard singularly perturbed model. Using Tikhonov-s theorem, we guarantee that the tracking error can be reduced to arbitrarily small bound. A numerical example is given to illustrate the effectiveness of our proposed method.

Keywords: Piezoelectric actuator, tracking control, hysteresis effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
4775 Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Authors: Wei Hua Ho

Abstract:

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

Keywords: Jet Engine Test Cell, Unsteady flow, Inlet Vortex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
4774 Assembly Process Algorithms of Flexible Cell

Authors: M. Kusá, M. Matúšová, A. Javorová, K. Velí

Abstract:

This paper deals about four items assembly process of linear drive. This assembly will be realized in flexible assembly cell on Institute of Manufacturing Systems and Applied Mechanics. There is defined manufacturing cell, individual actuators created our flexible cell. Next chapter is about control type, detailed describe a sequence control type, which will be used in mentioned flexible assembly cell. All cell control is divided in individual steps instructions. There instructions illustrate table number III.

Keywords: assembly, flexible cell, sequence control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
4773 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
4772 Study on Mixed Convection Heat Transfer in Vertical Ducts with Radiation Effects

Authors: G. Rajamohan, N. Ramesh, P. Kumar

Abstract:

Experiments have been performed to investigate the radiation effects on mixed convection heat transfer for thermally developing airflow in vertical ducts with two differentially heated isothermal walls and two adiabatic walls. The investigation covers the Reynolds number Re = 800 to Re = 2900, heat flux varied from 256 W/m2 to 863 W/m2, hot wall temperature ranges from 27°C to 100 °C, aspect ratios 1 & 0.5 and the emissivity of internal walls are 0.05 and 0.85. In the present study, combined flow visualization was conducted to observe the flow patterns. The effect of surface temperature along the walls was studied to investigate the local Nusselt number variation within the duct. The result shows that flow condition and radiation significantly affect the total Nusselt number and tends to reduce the buoyancy condition.

Keywords: Mixed convection, vertical duct, thermally developing and radiation effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
4771 Optimal Control for Coordinated Control of SVeC and PSS Damping Controllers

Authors: K. Himaja, T. S. Surendra, S. Tara Kalyani

Abstract:

In this article, Optimal Control for Coordinated Control (COC) of Series Vectorial Compensator (SVeC) and Power System Stabilizer (PSS) in order to damp Low Frequency Oscillations (LFO) is proposed. SVeC is a series Flexible Alternating Current Transmission System (FACTS) device. The Optimal Control strategy based on state feedback control for coordination of PSS and SVeC controllers under different loading conditions has not been developed. So, the Optimal State Feedback Controller (OSFC) for incorporating of PSS and SVeC controllers in COC manner has been developed in this paper. The performance of the proposed controller is checked through eigenvalue analysis and nonlinear time domain simulation results. The proposed Optimal Controller design for the COC of SVeC and PSS results will be analyzed without controller. The comparative results show that Optimal Controller for COC of SVeC and PSSs improve greatly the system damping LFO than without controller.

Keywords: Coordinated control, damping controller, optimal state feedback controller, power system stabilizer, series vectorial compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
4770 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
4769 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

Authors: M. Bayareh, S. Mortazavi

Abstract:

The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.

Keywords: drop migration, shear flow, front-tracking method, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
4768 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage

Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing

Abstract:

The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.

Keywords: Lunar samples, gas disturbance, storage device, characteristic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
4767 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
4766 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: Sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
4765 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: Microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
4764 Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

Authors: H. Ghanbari, H. Nikbakht, A. Zahedi, M. Ghanbari

Abstract:

This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

Keywords: Wind Turbine, Simulink, Reference Tracking Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
4763 A Parametric Study on the Backwater Level Due to a Bridge Constriction

Authors: S. Atabay, T. A. Ali, Md. M. Mortula

Abstract:

This paper presents the results and findings from a parametric study on the water surface elevation at upstream of bridge constriction for subcritical flow. In this study, the influence of Manning's Roughness Coefficient of main channel (nmc) and floodplain (nfp), and bridge opening (b) flow rate (Q), contraction (kcon) and expansion coefficients (kexp) were investigated on backwater level. The DECK bridge models with different span widths and without any pier were investigated within the two stage channel having various roughness conditions. One of the most commonly used commercial one-dimensional HEC-RAS model was used in this parametric study. This study showed that the effects of main channel roughness (nmc) and flow rate (Q) on the backwater level are much higher than those of the floodplain roughness (nfp). Bridge opening (b) with contraction (kcon) and expansion coefficients (kexp) have very little effect on the backwater level within this range of parameters.

Keywords: Bridge backwater, parametric study and waterways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
4762 Mobile Robot Control by Von Neumann Computer

Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov

Abstract:

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350
4761 Subcritical Water Extraction of Mannitol from Olive Leaves

Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar

Abstract:

Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.

Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
4760 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: Flow-shop scheduling problem, makespan, Petri nets, state equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
4759 Helicopter Adaptive Control with Parameter Estimation Based on Feedback Linearization

Authors: A. R. Nemati, M. Haddad Zarif, M. M. Fateh

Abstract:

This paper presents an adaptive feedback linearization approach to derive helicopter. Ideal feedback linearization is defined for the cases when the system model is known. Adaptive feedback linearization is employed to get asymptotically exact cancellation for the inherent uncertainty in the knowledge of the given parameters of system. The control algorithm is implemented using the feedback linearization technique and adaptive method. The controller parameters are unknown where an adaptive control law aims to drive them towards their ideal values for providing perfect model matching between the reference model and the closed-loop plant model. The converged parameters of controller would then provide good estimates for the unknown plant parameters.

Keywords: Adaptive control, helicopter, feedback linearization, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
4758 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System

Authors: Saran Satsangi, Ashish Saini, Amit Saraswat

Abstract:

In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approach

Keywords: Voltage control areas, reactive power management, K-means clustering algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
4757 Slip Effect Study of 4:1 Contraction Flow for Oldroyd-B Model

Authors: N. Thongjub, B. Puangkird, V. Ngamaramvaranggul

Abstract:

The numerical simulation of the slip effect via vicoelastic fluid for 4:1 contraction problem is investigated with regard to kinematic behaviors of streamlines and stress tensor by models of the Navier-Stokes and Oldroyd-B equations. Twodimensional spatial reference system of incompressible creeping flow with and without slip velocity is determined and the finite element method of a semi-implicit Taylor-Galerkin pressure-correction is applied to compute the problem of this Cartesian coordinate system including the schemes of velocity gradient recovery method and the streamline-Upwind / Petrov-Galerkin procedure. The slip effect at channel wall is added to calculate after each time step in order to intend the alteration of flow path. The result of stress values and the vortices are reduced by the optimum slip coefficient of 0.1 with near the outcome of analytical solution.

Keywords: Slip effect, Oldroyd-B fluid, slip coefficient, time stepping method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
4756 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori

Abstract:

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Keywords: Creativity, innovation, military, organization, teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
4755 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search

Authors: Rungnapa Taithai, Anant Oonsivilai

Abstract:

This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.

Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
4754 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
4753 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
4752 Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization

Authors: Omid Heydarnia, Akbar Allahverdizadeh, Behnam Dadashzadeh, M. R. Sayyed Noorani

Abstract:

Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.

Keywords: Underactuated system, biped robot, fuzzy control, partial feedback linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
4751 Design of DC Voltage Control for D-STATCOM

Authors: Kittaya Somsai, Thanatchai Kulworawanichpong, Nitus Voraphonpiput

Abstract:

This paper presents the DC voltage control design of D-STATCOM when the D-STATCOM is used for load voltage regulation. Although, the DC voltage can be controlled by active current of the D-STATCOM, reactive current still affects the DC voltage. To eliminate this effect, the control strategy with elimination effect of the reactive current is proposed and the results of the control with and without the elimination the effect of the reactive current are compared. For obtaining the proportional and integral gains of the PI controllers, the symmetrical optimum and genetic algorithms methods are applied. The stability margin of these methods are obtained and discussed in detail. In addition, the performance of the DC voltage control based on symmetrical optimum and genetic algorithms methods are compared. Effectiveness of the controllers designed was verified through computer simulation performed by using Power System Tool Block (PSB) in SIMULINK/MATLAB. The simulation results demonstrated that the DC voltage control proposed is effective in regulating DC voltage when the DSTATCOM is used for load voltage regulation.

Keywords: D-STATCOM, DC voltage control, Symmetrical optimum, Genetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5029
4750 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube

Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi

Abstract:

In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.

Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
4749 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques

Authors: H. Elbehiery, A. Hefnawy, M. Elewa

Abstract:

Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.

Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6626
4748 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

Authors: Mustafa Resa Becan

Abstract:

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
4747 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Authors: Mohammad Mirabi

Abstract:

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876