Search results for: MRAS algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3428

Search results for: MRAS algorithm.

2528 Feasibility Study on Designing a Flat Loop Heat Pipe (LHP) to Recover the Heat from Exhaust of a Gas Turbine

Authors: M.H.Ghaffari

Abstract:

A theoretical study is conducted to design and explore the effect of different parameters such as heat loads, the tube size of piping system, wick thickness, porosity and hole size on the performance and capability of a Loop Heat Pipe(LHP). This paper presents a steady state model that describes the different phenomena inside a LHP. Loop Heat Pipes(LHPs) are two-phase heat transfer devices with capillary pumping of a working fluid. By their original design comparing with heat pipes and special properties of the capillary structure, they-re capable of transferring heat efficiency for distances up to several meters at any orientation in the gravity field, or to several meters in a horizontal position. This theoretical model is described by different relations to satisfy important limits such as capillary and nucleate boiling. An algorithm is developed to predict the size of the LHP satisfying the limitations mentioned above for a wide range of applied loads. Finally, to assess and evaluate the algorithm and all the relations considered, we have used to design a new kind of LHP to recover the heat from the exhaust of an actual Gas Turbine. By finding the results, it showed that we can use the LHP as a very high efficient device to recover the heat even in high amount of loads(exhaust of a gas turbine). The sizes of all parts of the LHP were obtained using the developed algorithm.

Keywords: Loop Heat Pipe, Head Load, Liquid-Vapor Interface, Heat Transfer, Design Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
2527 Solar-Inducted Cluster Head Relocation Algorithm

Authors: Goran Djukanovic, Goran Popovic

Abstract:

A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.

Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
2526 Accurate Visualization of Graphs of Functions of Two Real Variables

Authors: Zeitoun D. G., Thierry Dana-Picard

Abstract:

The study of a real function of two real variables can be supported by visualization using a Computer Algebra System (CAS). One type of constraints of the system is due to the algorithms implemented, yielding continuous approximations of the given function by interpolation. This often masks discontinuities of the function and can provide strange plots, not compatible with the mathematics. In recent years, point based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of complex surfaces. In this paper we present different artifacts created by mesh surfaces near discontinuities and propose a point based method that controls and reduces these artifacts. A least squares penalty method for an automatic generation of the mesh that controls the behavior of the chosen function is presented. The special feature of this method is the ability to improve the accuracy of the surface visualization near a set of interior points where the function may be discontinuous. The present method is formulated as a minimax problem and the non uniform mesh is generated using an iterative algorithm. Results show that for large poorly conditioned matrices, the new algorithm gives more accurate results than the classical preconditioned conjugate algorithm.

Keywords: Function singularities, mesh generation, point allocation, visualization, collocation least squares method, Augmented Lagrangian method, Uzawa's Algorithm, Preconditioned Conjugate Gradien

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
2525 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer

Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2524 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
2523 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
2522 Scheduling a Project to Minimize Costs of Material Requirements

Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi

Abstract:

Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.

Keywords: Project scheduling, metaheuristic, material ordering, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2521 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa E. Abdallah, Bajes Y. Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: Ant colony-based routing, position-based routing, MANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
2520 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT

Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu

Abstract:

Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.

Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915
2519 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator

Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz

Abstract:

This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.

Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295
2518 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel

Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan

Abstract:

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.

Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
2517 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
2516 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
2515 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: Data Assimilation, Parallel Algorithm, GPU architectures, Ocean Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
2514 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer

Authors: S.M. Bahri, F.T. Bendimerad

Abstract:

We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.

Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
2513 Material Parameter Identification of Modified AbdelKarim-Ohno Model

Authors: M. Cermak, T. Karasek, J. Rojicek

Abstract:

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Keywords: Genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
2512 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System

Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour

Abstract:

This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.

Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
2511 Power Flow Control with UPFC in Power Transmission System

Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri

Abstract:

In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.

Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4290
2510 A Low-cost Reconfigurable Architecture for AES Algorithm

Authors: Yibo Fan, Takeshi Ikenaga, Yukiyasu Tsunoo, Satoshi Goto

Abstract:

This paper proposes a low-cost reconfigurable architecture for AES algorithm. The proposed architecture separates SubBytes and MixColumns into two parallel data path, and supports different bit-width operation for this two data path. As a result, different number of S-box can be supported in this architecture. The throughput and power consumption can be adjusted by changing the number of S-box running in this design. Using the TSMC 0.18μm CMOS standard cell library, a very low-cost implementation of 7K Gates is obtained under 182MHz frequency. The maximum throughput is 360Mbps while using 4 S-Box simultaneously, and the minimum throughput is 114Mbps while only using 1 S-Box

Keywords: AES, Reconfigurable architecture, low cost

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2509 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes

Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.

Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
2508 Automatic Design Algorithm for the Tower Crane Foundations

Authors: Sungho Lee, Goonjae Lee, Chaeyeon Lim, Sunkuk Kim

Abstract:

Foundation of tower crane serves to ensure stability against vertical and horizontal forces. If foundation stress is not sufficient, tower crane may be subject to overturning, shearing or foundation settlement. Therefore, engineering review of stable support is a highly critical part of foundation design. However, there are not many professionals who can conduct engineering review of tower crane foundation and, if any, they have information only on a small number of cranes in which they have hands-on experience. It is also customary to rely on empirical knowledge and tower crane renter-s recommendations rather than designing foundation on the basis of engineering knowledge. Therefore, a foundation design automation system considering not only lifting conditions but also overturning risk, shearing and vertical force may facilitate production of foolproof foundation design for experts and enable even non-experts to utilize professional knowledge that only experts can access now. This study proposes Automatic Design Algorithm for the Tower Crane Foundations considering load and horizontal force.

Keywords: Tower Crane, Automatic Design, Foundations, Optimization Algorithm, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7214
2507 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2506 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs

Authors: S. Chaisit, H.Y. Kung, N.T. Phuong

Abstract:

Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.

Keywords: BPNs, indoor location, location estimation, intelligent location identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
2505 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN

Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang

Abstract:

Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.

Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
2504 Loading Methodology for a Capacity Constrained Job-Shop

Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain

Abstract:

This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.

Keywords: Manufacturing planning, loading, genetic algorithm, Job-Shop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
2503 Application of Artificial Intelligence for Tuning the Parameters of an AGC

Authors: R. N. Patel

Abstract:

This paper deals with the tuning of parameters for Automatic Generation Control (AGC). A two area interconnected hydrothermal system with PI controller is considered. Genetic Algorithm (GA) and Particle Swarm optimization (PSO) algorithms have been applied to optimize the controller parameters. Two objective functions namely Integral Square Error (ISE) and Integral of Time-multiplied Absolute value of the Error (ITAE) are considered for optimization. The effectiveness of an objective function is considered based on the variation in tie line power and change in frequency in both the areas. MATLAB/SIMULINK was used as a simulation tool. Simulation results reveal that ITAE is a better objective function than ISE. Performances of optimization algorithms are also compared and it was found that genetic algorithm gives better results than particle swarm optimization algorithm for the problems of AGC.

Keywords: Area control error, Artificial intelligence, Automatic generation control, Genetic Algorithms and modeling, ISE, ITAE, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
2502 Performance Evaluation of Prioritized Limited Processor-Sharing System

Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi

Abstract:

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
2501 Electrical Impedance Imaging Using Eddy Current

Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo

Abstract:

Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.

Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
2500 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2499 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863