Search results for: Large neural networks
3507 Large Deviations for Lacunary Systems
Authors: Bainian Li, Kongsheng Zhang
Abstract:
Let Xi be a Lacunary System, we established large deviations inequality for Lacunary System. Furthermore, we gained Marcinkiewicz Larger Number Law with dependent random variables sequences.Keywords: Lacunary system, larger deviations, Locally GeneralizedGaussian, Strong law of large numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10823506 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14613505 Cryptanalysis of Chang-Chang-s EC-PAKA Protocol for Wireless Mobile Networks
Authors: Hae-Soon Ahn, Eun-Jun Yoon
Abstract:
With the rapid development of wireless mobile communication, applications for mobile devices must focus on network security. In 2008, Chang-Chang proposed security improvements on the Lu et al.-s elliptic curve authentication key agreement protocol for wireless mobile networks. However, this paper shows that Chang- Chang-s improved protocol is still vulnerable to off-line password guessing attacks unlike their claims.
Keywords: Authentication, key agreement, wireless mobile networks, elliptic curve, password guessing attacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15113504 EZW Coding System with Artificial Neural Networks
Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar
Abstract:
Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19343503 Artificial Neural Network Models of the Ruminal pH in Holstein Steers
Authors: Alireza Vakili, Mohsen Danesh Mesgaran, Majid Abdollazade
Abstract:
In this study four Holstein steers with rumen fistula fed 7 kg of dry matter (DM) of diets differing in concentrate to alfalfa hay ratios as 60:40, 70:30, 80:20, and 90:10 in a 4 × 4 latin square design. The pH of the ruminal fluid was measured before the morning feeding (0.0 h) to 8 h post feeding. In this study, a two-layered feed-forward neural network trained by the Levenberg-Marquardt algorithm was used for modelling of ruminal pH. The input variables of the network were time, concentrate to alfalfa hay ratios (C/F), non fiber carbohydrate (NFC) and neutral detergent fiber (NDF). The output variable was the ruminal pH. The modeling results showed that there was excellent agreement between the experimental data and predicted values, with a high determination coefficient (R2 >0.96). Therefore, we suggest using these model-derived biological values to summarize continuously recorded pH data.Keywords: Ruminal pH, Artificial Neural Network (ANN), Non Fiber Carbohydrate, Neutral Detergent Fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15323502 A Method to Predict Hemorrhage Disease of Grass Carp Tends
Authors: Zhongxu Chen, Jun Yang, Heyue Mao, Xiaoyu Zheng
Abstract:
Hemorrhage Disease of Grass Carp (HDGC) is a kind of commonly occurring illnesses in summer, and the extremely high death rate result in colossal losses to aquaculture. As the complex connections among each factor which influences aquiculture diseases, there-s no quit reasonable mathematical model to solve the problem at present.A BP neural network which with excellent nonlinear mapping coherence was adopted to establish mathematical model; Environmental factor, which can easily detected, such as breeding density, water temperature, pH and light intensity was set as the main analyzing object. 25 groups of experimental data were used for training and test, and the accuracy of using the model to predict the trend of HDGC was above 80%. It is demonstrated that BP neural network for predicating diseases in HDGC has a particularly objectivity and practicality, thus it can be spread to other aquiculture disease.Keywords: Aquaculture, Hemorrhage Disease of Grass Carp, BP Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19173501 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4073500 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23903499 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.
Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12103498 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14843497 Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks
Authors: Iskandar Ishak, Naomie Salim
Abstract:
Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.Keywords: Unstructured peer-to-peer, Searching, Retrieval, Internet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15373496 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21743495 Knowledge Management in Cross- Organizational Networks as Illustrated by One of the Largest European ICT Associations A Case Study of the “METORA
Authors: Thomas Klauß
Abstract:
In networks, mainly small and medium-sized businesses benefit from the knowledge, experiences and solutions offered by experts from industry and science or from the exchange with practitioners. Associations which focus, among other things, on networking, information and knowledge transfer and which are interested in supporting such cooperations are especially well suited to provide such networks and the appropriate web platforms. Using METORA as an example – a project developed and run by the Federal Association for Information Economy, Telecommunications and New Media e.V. (BITKOM) for the Federal Ministry of Economics and Technology (BMWi) – This paper will discuss how associations and other network organizations can achieve this task and what conditions they have to consider.
Keywords: Associations, collaboration, communities, crossdepartmental organizations, semantic web, web 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13043494 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology
Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.
Abstract:
This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.
Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193493 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hoc networks, blockchain, MPR, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9183492 Solving Bus Terminal Location Problem Using Genetic Algorithm
Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil
Abstract:
Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23053491 Region-Based Image Fusion with Artificial Neural Network
Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng
Abstract:
For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22583490 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008
Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang
Abstract:
Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16473489 ANN-Based Classification of Indirect Immuno Fluorescence Images
Authors: P. Soda, G.Iannello
Abstract:
In this paper we address the issue of classifying the fluorescent intensity of a sample in Indirect Immuno-Fluorescence (IIF). Since IIF is a subjective, semi-quantitative test in its very nature, we discuss a strategy to reliably label the image data set by using the diagnoses performed by different physicians. Then, we discuss image pre-processing, feature extraction and selection. Finally, we propose two ANN-based classifiers that can separate intrinsically dubious samples and whose error tolerance can be flexibly set. Measured performance shows error rates less than 1%, which candidates the method to be used in daily medical practice either to perform pre-selection of cases to be examined, or to act as a second reader.
Keywords: Artificial neural networks, computer aided diagnosis, image classification, indirect immuno-fluorescence, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15693488 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method
Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi
Abstract:
Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17283487 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser
Abstract:
In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16113486 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.
Keywords: Component, active vehicle, cooperation, petri nets, trust management, VANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11243485 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5413484 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network
Authors: Anamika Jain, A. S. Thoke, R. N. Patel
Abstract:
This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.
Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31873483 Handwritten Character Recognition Using Multiscale Neural Network Training Technique
Authors: Velappa Ganapathy, Kok Leong Liew
Abstract:
Advancement in Artificial Intelligence has lead to the developments of various “smart" devices. Character recognition device is one of such smart devices that acquire partial human intelligence with the ability to capture and recognize various characters in different languages. Firstly multiscale neural training with modifications in the input training vectors is adopted in this paper to acquire its advantage in training higher resolution character images. Secondly selective thresholding using minimum distance technique is proposed to be used to increase the level of accuracy of character recognition. A simulator program (a GUI) is designed in such a way that the characters can be located on any spot on the blank paper in which the characters are written. The results show that such methods with moderate level of training epochs can produce accuracies of at least 85% and more for handwritten upper case English characters and numerals.Keywords: Character recognition, multiscale, backpropagation, neural network, minimum distance technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19293482 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach
Authors: D. A. Farinde
Abstract:
One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.
Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27043481 Cluster Based Energy Efficient and Fault Tolerant n-Coverage in Wireless Sensor Network
Authors: D. Satish Kumar, N. Nagarajan
Abstract:
Coverage conservation and extend the network lifetime are the primary issues in wireless sensor networks. Due to the large variety of applications, coverage is focus to a wide range of interpretations. The applications necessitate that each point in the area is observed by only one sensor while other applications may require that each point is enclosed by at least sensors (n>1) to achieve fault tolerance. Sensor scheduling activities in existing Transparent and non- Transparent relay modes (T-NT) Mobile Multi-Hop relay networks fails to guarantee area coverage with minimal energy consumption and fault tolerance. To overcome these issues, Cluster based Energy Competent n- coverage scheme called (CEC n-coverage scheme) to ensure the full coverage of a monitored area while saving energy. CEC n-coverage scheme uses a novel sensor scheduling scheme based on the n-density and the remaining energy of each sensor to determine the state of all the deployed sensors to be either active or sleep as well as the state durations. Hence, it is attractive to trigger a minimum number of sensors that are able to ensure coverage area and turn off some redundant sensors to save energy and therefore extend network lifetime. In addition, decisive a smallest amount of active sensors based on the degree coverage required and its level. A variety of numerical parameters are computed using ns2 simulator on existing (T-NT) Mobile Multi-Hop relay networks and CEC n-coverage scheme. Simulation results showed that CEC n-coverage scheme in wireless sensor network provides better performance in terms of the energy efficiency, 6.61% reduced fault tolerant in terms of seconds and the percentage of active sensors to guarantee the area coverage compared to exiting algorithm.
Keywords: Wireless Sensor network, Mobile Multi-Hop relay networks, n-coverage, Cluster based Energy Competent, Transparent and non- Transparent relay modes, Fault Tolerant, sensor scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21483480 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: Artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10833479 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22113478 Evaluation of Context Information for Intermittent Networks
Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson
Abstract:
The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.
Keywords: Context aware adaptive routing, Kalman filter prediction, spray and wait, spray and focus, intermittent networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914