Search results for: Fuzzy Cognitive Map(FCM)
377 Retrospective Reconstruction of Time Series Data for Integrated Waste Management
Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy
Abstract:
The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.
Keywords: Content analysis, factors, integrated waste management system, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018376 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis
Authors: Mandana Kariminejad, Ali Ghaffari
Abstract:
Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085375 Automatic Segmentation of Lung Areas in Magnetic Resonance Images
Authors: Alireza Osareh, Bita Shadgar
Abstract:
Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057374 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals
Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman
Abstract:
Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898373 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215372 Energy Management System with Temperature Rise Prevention on Hybrid Ships
Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy
Abstract:
Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.
Keywords: energy storage system, fuzzy logic control, hybrid ship, thermal runaway
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600371 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120370 A Portable Cognitive Tool for Engagement Level and Activity Identification
Authors: T. Teo, S. W. Lye, Y. F. Li, Z. Zakaria
Abstract:
Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that using a developed channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available brain computer interface (BCI) 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring, ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.
Keywords: Neurophysiology, monitoring, EEG, outliers, electroencephalography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89369 MPSO based Model Order Formulation Technique for SISO Continuous Systems
Authors: S. N. Deepa, G. Sugumaran
Abstract:
This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782368 Evaluation of Cognitive Benefits among Differently Abled Subjects with Video Game as Intervention
Authors: H. Nagendra, Vinod Kumar, S. Mukherjee
Abstract:
In this study, the potential benefits of playing action video game among congenitally deaf and dumb subjects is reported in terms of EEG ratio indices. The frontal and occipital lobes are associated with development of motor skills, cognition, and visual information processing and color recognition. The sixteen hours of First-Person shooter action video game play resulted in the increase of the ratios β/(α+θ) and β/θ in frontal and occipital lobes. This can be attributed to the enhancement of certain aspect of cognition among deaf and dumb subjects.Keywords: Cognitive enhancement, video games, EEG band powers, Deaf and Dumb subjects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768367 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials
Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang
Abstract:
The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237366 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737365 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique
Authors: M. S. Sivagamasundari, P. Melba Mary
Abstract:
Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.
Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346364 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144363 A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment
Authors: Muhammad R. Alrabeiah, Ibrahim S. Alnomay
Abstract:
The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.
Keywords: Cognitive radio, Spectrum sensing, Collaborative sensors, Weighted Decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731362 Effective Personal Knowledge Management: A Proposed Online Framework
Authors: Shahrinaz Ismail, Mohd Sharifuddin Ahmad
Abstract:
This paper presents an analytical framework for an effective online personal knowledge management (PKM) of knowledge workers. The development of this framework is prompted by our qualitative research on the PKM processes and cognitive enablers of knowledge workers in eight organisations selected from three main industries in Malaysia. This multiple-case research identifies the relationships between the effectiveness of four online PKM processes: get/retrieve, understand/analyse, share, and connect. It also establishes the importance of cognitive enablers that mediate this relationship, namely, method, identify, decide and drive. Qualitative analysis is presented as the findings, supported by the preceded quantitative analysis on an exploratory questionnaire survey.Keywords: Bottom-up approach, knowledge organisation, organisational knowledge management, personal knowledge management, software agent technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487361 Pathogenetic Mechanism of Alcohol's Effect on Academic Performance
Authors: M. O. Welcome, E. V. Pereverzeva, V. A. Pereverzev
Abstract:
The regulatory competence of blood glucose homeostasis might determine the degree of academic performance. The aim of this study was to produce a model of students' alcohol use based on glucose homeostasis control and cognitive functions that might define the pathogenetic mechanism of alcohol's effect on academic performance. The study took six hours and thirty minutes on fasting, involving thirteen male students. Disturbances in cognitive functions, precisely a decrease in the effectiveness of active attention and a faster development of fatigue after four to six hours of mental work in alcohol users, compared to abstainers was statistically proven. These disturbances in alcohol users were retained even after seven to ten days of moderate alcohol use and might be the reason for the low academic performances among students who use alcoholic beverages.
Keywords: Alcohol, academic performance, pathogenetic mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528360 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782359 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629358 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214357 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation
Authors: J. Fenianos, C. Khater, D. Brouillet
Abstract:
Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.
Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285356 Review and Experiments on SDMSCue
Authors: Ashraf Anwar
Abstract:
In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373355 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040354 The Emotional Language and Temperamental Traits
Authors: Barbara Gawda, Ewa Szepietowska, Agnieszka Gawda
Abstract:
The aim of this study is to describe the associations between the temperamental traits and the narrative emotional expression. The Temperament Questionnaire was used: The FCB-TI of Zawadzki & Strelau. A sample of 85 persons described three emotional situations: love. hate, and anxiety. This study analyzes the verbal form of expression by means of a written account of emotions. The relationship between the narratives of love, hate and anxiety and temperament characteristics were studied. Results indicate that vigorousness (VI), perseverance (PE), sensory sensitivity (SS), emotional reactivity (ER), endurance (EN) and activeness (AC) have a significant impact on the emotional expression in narratives. The temperamental traits are linked to the form of emotional language. It means that temperament has an impact on cognitive representations of emotions.Keywords: Emotional narratives, Cognitive representation, Love, Hate, Anxiety, Temperament.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541353 Learning Theories within Coaching Process
Authors: P. Fazel
Abstract:
These days we face with so many advertisements in magazines, those mentioned coaching is pragmatic specialties which help people make change in their lives. Up to know Specialty coaches are not necessarily therapists, consultants or psychologist, thus they may not know psychological theories. The International Coach Federation identifies "facilitating learning and results" as one of its four core coach competencies, without understanding learning theories coaching practice hangs in theoretical abyss. Thus the aim of this article is investigating learning theories within coaching process. Therefore, I reviewed some cognitive and behavioral learning theories and analyzed their contribution with coaching process which has been introduced in mentor coaches and ICF certified coaches' papers and books. The result demonstrated that coaching profession is strongly grounded in learning theories, and it will be strengthened by the validation of theories and evidence-based research as we move forward. Thus, it needs more research in order to applying effective theoretical frameworks.
Keywords: Coaching, Learning theories. Cognitive learning theories, behavioral learning theories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16426352 The Effect of Drug Prevention Programme Based On Cognitive-Behavioral Therapy (Cbt) and Multidimensional Self Concept Module towards Resiliency and Aggression among At-Risk Youth in Malaysia
Authors: Mohammad Aziz Shah Mohamed Arip, Aslina Ahmad, Fauziah Mohd Sa'ad, Samsiah Mohd Jais, Syed Sofian Syed Salim
Abstract:
This experimental study evaluates the effect of using Cognitive-Behavioral Therapy (CBT) and Multidimensional Self- Concept Model (MSCM) in a drug prevention programme to increase resiliency and reduce aggression among at-risk youth in Malaysia. A number of 60 (N=60) university students who were at-risk of taking drugs were involved in this study. Participants were identified with self-rating scales, Adolescent Resilience Attitude Scale (ARAS) and Aggression Questionnaire. Based on the mean score of these instruments, the participants were divided into the treatment group, and the control group. Data were analyzed using t-test. The finding showed that the mean score of resiliency was increased in the treatment group compared to the control group. It also shows that the mean score of aggression was reduced in the treatment group compared to the control group. Drug Prevention Programme was found to help in enhancing resiliency and reducing aggression among participants in the treatment group compared to the controlled group. Implications were given regarding the preventive actions on drug abuse among youth in Malaysia.
Keywords: Drug Prevention Programme, Cognitive-Behavioral Therapy (CBT), Multidimensional Self Concept Model (MSCM), resiliency, aggression, at-risk youth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792351 A Distributed Cognition Framework to Compare E-Commerce Websites Using Data Envelopment Analysis
Authors: C. lo Storto
Abstract:
This paper presents an approach based on the adoption of a distributed cognition framework and a non parametric multicriteria evaluation methodology (DEA) designed specifically to compare e-commerce websites from the consumer/user viewpoint. In particular, the framework considers a website relative efficiency as a measure of its quality and usability. A website is modelled as a black box capable to provide the consumer/user with a set of functionalities. When the consumer/user interacts with the website to perform a task, he/she is involved in a cognitive activity, sustaining a cognitive cost to search, interpret and process information, and experiencing a sense of satisfaction. The degree of ambiguity and uncertainty he/she perceives and the needed search time determine the effort size – and, henceforth, the cognitive cost amount – he/she has to sustain to perform his/her task. On the contrary, task performing and result achievement induce a sense of gratification, satisfaction and usefulness. In total, 9 variables are measured, classified in a set of 3 website macro-dimensions (user experience, site navigability and structure). The framework is implemented to compare 40 websites of businesses performing electronic commerce in the information technology market. A questionnaire to collect subjective judgements for the websites in the sample was purposely designed and administered to 85 university students enrolled in computer science and information systems engineering undergraduate courses.Keywords: Website, e-commerce, DEA, distributed cognition, evaluation, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706350 On the Need to have an Additional Methodology for the Psychological Product Measurement and Evaluation
Authors: Corneliu Sofronie, Roxana Zubcov
Abstract:
Cognitive Science appeared about 40 years ago, subsequent to the challenge of the Artificial Intelligence, as common territory for several scientific disciplines such as: IT, mathematics, psychology, neurology, philosophy, sociology, and linguistics. The new born science was justified by the complexity of the problems related to the human knowledge on one hand, and on the other by the fact that none of the above mentioned sciences could explain alone the mental phenomena. Based on the data supplied by the experimental sciences such as psychology or neurology, models of the human mind operation are built in the cognition science. These models are implemented in computer programs and/or electronic circuits (specific to the artificial intelligence) – cognitive systems – whose competences and performances are compared to the human ones, leading to the psychology and neurology data reinterpretation, respectively to the construction of new models. During these processes if psychology provides the experimental basis, philosophy and mathematics provides the abstraction level utterly necessary for the intermission of the mentioned sciences. The ongoing general problematic of the cognitive approach provides two important types of approach: the computational one, starting from the idea that the mental phenomenon can be reduced to 1 and 0 type calculus operations, and the connection one that considers the thinking products as being a result of the interaction between all the composing (included) systems. In the field of psychology measurements in the computational register use classical inquiries and psychometrical tests, generally based on calculus methods. Deeming things from both sides that are representing the cognitive science, we can notice a gap in psychological product measurement possibilities, regarded from the connectionist perspective, that requires the unitary understanding of the quality – quantity whole. In such approach measurement by calculus proves to be inefficient. Our researches, deployed for longer than 20 years, lead to the conclusion that measuring by forms properly fits to the connectionism laws and principles.Keywords: complementary methodology, connection approach, networks without scaling, quantum psychology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670349 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, FAHP, TOPSIS, PROMETHEE, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938348 Game based Learning to Enhance Cognitive and Physical Capabilities of Elderly People: Concepts and Requirements
Authors: Aurelie Aurilla Bechina Arntzen
Abstract:
The last decade has seen an early majority of people The last decade, the role of the of the information communication technologies has increased in improving the social and business life of people. Today, it is recognized that game could contribute to enhance virtual rehabilitation by better engaging patients. Our research study aims to develop a game based system enhancing cognitive and physical capabilities of elderly people. To this end, the project aims to develop a low cost hand held system based on existing game such as Wii, PSP, or Xbox. This paper discusses the concepts and requirements for developing such game for elderly people. Based on the requirement elicitation, we intend to develop a prototype related to sport and dance activities.Keywords: Elderly people, Game based learning system, Health systems, rehabilitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517