Search results for: initial detection
1669 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.
Keywords: Long-short-term memory, re-identification, security critical application, spatial-temporal awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5371668 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351667 Multiple-Points Fault Signature's Dynamics Modeling for Bearing Defect Frequencies
Authors: Muhammad F. Yaqub, Iqbal Gondal, Joarder Kamruzzaman
Abstract:
Occurrence of a multiple-points fault in machine operations could result in exhibiting complex fault signatures, which could result in lowering fault diagnosis accuracy. In this study, a multiple-points defect model (MPDM) is proposed which can simulate fault signature-s dynamics for n-points bearing faults. Furthermore, this study identifies that in case of multiple-points fault in the rotary machine, the location of the dominant component of defect frequency shifts depending upon the relative location of the fault points which could mislead the fault diagnostic model to inaccurate detections. Analytical and experimental results are presented to characterize and validate the variation in the dominant component of defect frequency. Based on envelop detection analysis, a modification is recommended in the existing fault diagnostic models to consider the multiples of defect frequency rather than only considering the frequency spectrum at the defect frequency in order to incorporate the impact of multiple points fault.
Keywords: Envelop detection, machine defect frequency, multiple faults, machine health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22761666 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7121665 Bridging Quantitative and Qualitative of Glaucoma Detection
Authors: Noor Elaiza Abdul Khalid, Noorhayati Mohamed Noor, Zamalia Mahmud, Saadiah Yahya, and Norharyati Md Ariff
Abstract:
Glaucoma diagnosis involves extracting three features of the fundus image; optic cup, optic disc and vernacular. Present manual diagnosis is expensive, tedious and time consuming. A number of researches have been conducted to automate this process. However, the variability between the diagnostic capability of an automated system and ophthalmologist has yet to be established. This paper discusses the efficiency and variability between ophthalmologist opinion and digital technique; threshold. The efficiency and variability measures are based on image quality grading; poor, satisfactory or good. The images are separated into four channels; gray, red, green and blue. A scientific investigation was conducted on three ophthalmologists who graded the images based on the image quality. The images are threshold using multithresholding and graded as done by the ophthalmologist. A comparison of grade from the ophthalmologist and threshold is made. The results show there is a small variability between result of ophthalmologists and digital threshold.Keywords: Digital Fundus Image, Glaucoma Detection, Multithresholding, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471664 A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation
Authors: M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh, A. Ghanbarzadeh, N.Hedayat
Abstract:
This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.
Keywords: Neural Networks, Gravitational Search Algorithm (GSR), Wessinger's Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24011663 Online Forums Hotspot Detection and Analysis Using Aging Theory
Authors: K. Nirmala Devi, V. Murali Bhaskaran
Abstract:
The exponential growth of social media arouses much attention on public opinion information. The online forums, blogs, micro blogs are proving to be extremely valuable resources and are having bulk volume of information. However, most of the social media data is unstructured and semi structured form. So that it is more difficult to decipher automatically. Therefore, it is very much essential to understand and analyze those data for making a right decision. The online forums hotspot detection is a promising research field in the web mining and it guides to motivate the user to take right decision in right time. The proposed system consist of a novel approach to detect a hotspot forum for any given time period. It uses aging theory to find the hot terms and E-K-means for detecting the hotspot forum. Experimental results demonstrate that the proposed approach outperforms k-means for detecting the hotspot forums with the improved accuracy.
Keywords: Hotspot forums, Micro blog, Blog, Sentiment Analysis, Opinion Mining, Social media, Twitter, Web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871662 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces
Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia
Abstract:
Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.
Keywords: Best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11901661 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme
Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi
Abstract:
Multiple User Interference (MUI) considers the primary problem in Optical Code-Division Multiple Access (OCDMA), which resulting from the overlapping among the users. In this article we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.Keywords: Multiple User Interference (MUI), Optical Code-Division Multiple Access (OCDMA), Partial Modified Prime Code (PMP), Spectral Amplitude Coding (SAC), Successive Interference Cancellation (SIC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361660 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.
Keywords: Magnetic signature, data analysis, magnetization, deperming techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10821659 Attack Detection through Image Adaptive Self Embedding Watermarking
Authors: S. Shefali, S. M. Deshpande, S. G. Tamhankar
Abstract:
Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.
Keywords: Cryptography, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441658 Morphing Human Faces: Automatic Control Points Selection and Color Transition
Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu
Abstract:
In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.
Keywords: color transition, genetic algorithms morphing, warping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28301657 QR Technology to Automate Health Condition Detection Payment System: A Case Study in Schools of the Kingdom of Saudi Arabia
Authors: Amjad Alsulami, Farah Albishri, Kholod Alzubidi, Lama Almehemadi, Salma Elhag
Abstract:
Food allergy is a common and rising problem among children. Many students have their first allergic reaction at school, one of these is anaphylaxis, which can be fatal. This study discovered that several schools' processes lacked safety regulations and information on how to handle allergy issues and chronic diseases like diabetes where students were not supervised or monitored during the cafeteria purchasing process. Academic institutions have no obvious prevention or effort when purchasing food containing allergens or negatively impacting the health status of students who suffer from chronic diseases. The stability of students' health must be maintained because it greatly affects their performance and educational achievement. To address this issue, this paper uses a business reengineering process to propose the automation of the whole food-purchasing process, which will aid in detecting and avoiding allergic occurrences and preventing any side effects from eating foods that are conflicting with students' health. This may be achieved by designing a smart card with an embedded QR code that reveals which foods cause an allergic reaction in a student. A survey was distributed to determine and examine how the cafeteria will handle allergic children and whether any management or policy is applied in the school. Also, the survey findings indicate that the integration of QR technology into the food purchasing process would improve health condition detection. The family supported that the suggested solution would be advantageous because it ensured their children avoided eating not allowed food. Moreover, by analyzing and simulating the as-is process and the suggested process, the results demonstrate that there is an improvement in quality and time.
Keywords: QR code, smart card, food allergies, Business Process reengineering, health condition detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761656 Another Formal Proposal For Stealth
Authors: Adrien Derock, Pascal Veron
Abstract:
Taking into account the link between the efficiency of a detector and the complexity of a stealth mechanism, we propose in this paper a new formalism for stealth using graph theory.Keywords: Detection, eradication, graph, rootkit, stealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12301655 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521654 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.
Keywords: Biosorption, banana peels, isothermal models, manganese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32551653 Virtual Assembly in a Semi-Immersive Environment
Authors: Emad S. Abouel Nasr, Abdulaziz M. El-Tamimi, Mustufa H. Abidi, Abdulrahman M. Al-Ahmari
Abstract:
Virtual Assembly (VA) is one of the key technologies in advanced manufacturing field. It is a promising application of virtual reality in design and manufacturing field. It has drawn much interest from industries and research institutes in the last two decades. This paper describes a process for integrating an interactive Virtual Reality-based assembly simulation of a digital mockup with the CAD/CAM infrastructure. The necessary hardware and software preconditions for the process are explained so that it can easily be adopted by non VR experts. The article outlines how assembly simulation can improve the CAD/CAM procedures and structures; how CAD model preparations have to be carried out and which virtual environment requirements have to be fulfilled. The issue of data transfer is also explained in the paper. The other challenges and requirements like anti-aliasing and collision detection have also been explained. Finally, a VA simulation has been carried out for a ball valve assembly and a car door assembly with the help of Vizard virtual reality toolkit in a semi-immersive environment and their performance analysis has been done on different workstations to evaluate the importance of graphical processing unit (GPU) in the field of VA.Keywords: Collision Detection, Graphical Processing Unit (GPU), Virtual Reality (VR), Virtual Assembly (VA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29101652 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS
Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren
Abstract:
An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.
Keywords: Lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8641651 Improved Root-Mean-Square-Gain-Combining for SIMO Channels
Authors: Rania Minkara, Jean-Pierre Dubois
Abstract:
The major problem that wireless communication systems undergo is multipath fading caused by scattering of the transmitted signal. However, we can treat multipath propagation as multiple channels between the transmitter and receiver to improve the signal-to-scattering-noise ratio. While using Single Input Multiple Output (SIMO) systems, the diversity receivers extract multiple signal branches or copies of the same signal received from different channels and apply gain combining schemes such as Root Mean Square Gain Combining (RMSGC). RMSGC asymptotically yields an identical performance to that of the theoretically optimal Maximum Ratio Combining (MRC) for values of mean Signal-to- Noise-Ratio (SNR) above a certain threshold value without the need for SNR estimation. This paper introduces an improvement of RMSGC using two different issues. We found that post-detection and de-noising the received signals improve the performance of RMSGC and lower the threshold SNR.Keywords: Bit error rate, de-noising, pre-detection, root-meansquare gain combining, single-input multiple-output channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13431650 Effect of Real Wastewater on Biotransformation of 17α-ethynylestradiol by Ammonia-Oxidizing Bacteria in Nitrifying Activated Sludge
Authors: Natthawan Likitmongkonsakun, Tawan Limpiyakorn
Abstract:
17α-ethynylestradiol (EE2) is a synthetic estrogen used as a key ingredient in an oral contraceptives pill. EE2 is an endocrine disrupting compound, high in estrogenic potency. Although EE2 exhibits low degree of biodegradability with common microorganisms in wastewater treatment plants (WWTPs), this compound can be biotransformed by ammonia-oxidizing bacteria (AOB) via a co-metabolism mechanism in WWTPs. This study aimed to investigate the effect of real wastewater on biotransformation of EE2 by AOB. A preliminary experiment on the effect of nitrite and pH levels on abiotic transformation of EE2 suggested that the abiotic transformation occurred at only pH <6.8. Biotransformation of EE2 under the presence of municipal or industrial wastewater demonstrated that different types of wastewater affect EE2 biotransformation differently. Organic matters in wastewater were believed to deteriorate EE2 biotransformation via the competition effect. At a lower initial ammonium concentration, EE2 biotransformation can be retarded and the extent of the deterioration was COD-concentration dependent. However, when an initial ammonium concentration was elevated, thisphenomena disappeared. This is because when increasing the amount of the primary substrate, more AMO enzymes can be produced resulting in unlimited transformation of all compounds in the tests reducing the competitive effect of organic matters on EE2.
Keywords: 17α-ethynylestradiol, ammonia-oxidizing bacteria, nitrifying activated sludge, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54301649 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method
Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj
Abstract:
Two Lithium Disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting method. The glass rods were then fabricated into dental crowns via a hot pressing at 900˚C and 850˚C in order to study the effect of the pressing temperatures on the phase formation and microstructure of the glasses. Different samples of as cast glass and heat treated samples (600˚C and 700˚C) were used to press for investigating the effect of an initial microstructure on the hot pressing technique. Xray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the phase formation and microstructure of the samples, respectively. XRD results show that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formations but have less effect during pressing. SEM micrographs showed the microstructure of Li2Si2O5 as lath-like shape in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by the hot pressing and compiled microstructure.
Keywords: Lithium disilicate, Hot pressing, Dental crown, Microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41971648 Weld Defect Detection in Industrial Radiography Based Digital Image Processing
Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi
Abstract:
Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.
Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40791647 Detecting and Locating Wormhole Attacks in Wireless Sensor Networks Using Beacon Nodes
Authors: He Ronghui, Ma Guoqing, Wang Chunlei, Fang Lan
Abstract:
This paper focuses on wormhole attacks detection in wireless sensor networks. The wormhole attack is particularly challenging to deal with since the adversary does not need to compromise any nodes and can use laptops or other wireless devices to send the packets on a low latency channel. This paper introduces an easy and effective method to detect and locate the wormholes: Since beacon nodes are assumed to know their coordinates, the straight line distance between each pair of them can be calculated and then compared with the corresponding hop distance, which in this paper equals hop counts × node-s transmission range R. Dramatic difference may emerge because of an existing wormhole. Our detection mechanism is based on this. The approximate location of the wormhole can also be derived in further steps based on this information. To the best of our knowledge, our method is much easier than other wormhole detecting schemes which also use beacon nodes, and to those have special requirements on each nodes (e.g., GPS receivers or tightly synchronized clocks or directional antennas), ours is more economical. Simulation results show that the algorithm is successful in detecting and locating wormholes when the density of beacon nodes reaches 0.008 per m2.
Keywords: Beacon node, wireless sensor network, worm hole attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861646 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer
Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani
Abstract:
Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26031645 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141644 Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution
Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais
Abstract:
In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.
Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9831643 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29421642 Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.Keywords: Cement Rotary Kiln, Fault Detection, Delay Estimation Method, Locally Linear Neuro Fuzzy Model, LOLIMOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751641 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441640 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469