Search results for: SURF algorithm
2557 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7432556 Parallel Computation of Data Summation for Multiple Problem Spaces on Partitioned Optical Passive Stars Network
Authors: Khin Thida Latt, Mineo Kaneko, Yoichi Shinoda
Abstract:
In Partitioned Optical Passive Stars POPS network,nodes and couplers become free after slot to slot in some computation.It is necessary to efficiently utilize free couplers and nodes to be cost effective. Improving parallelism, we present the fast data summation algorithm for multiple problem spaces on P OP S(g, g) with smaller number of nodes for the case of d =n = g. For the case of d >n > g, we simulate the calculation of large number of data items dedicated to larger system with many nodes on smaller system with smaller number of nodes. The algorithm is faster than the best know algorithm and using smaller number of nodes and groups make the system low cost and practical.Keywords: Partitioned optical passive stars network, parallelcomputing, optical computing, data sum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11792555 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.
Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15242554 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting
Authors: Analise Borg, Paul Micallef
Abstract:
Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organise the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that nonparametric analysis offer potential results as the ones mentioned in the literature.
Keywords: Audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852553 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.
Keywords: Energy costs, flexible job-shop scheduling, memetic algorithm, power peak.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11172552 High-Speed Pipeline Implementation of Radix-2 DIF Algorithm
Authors: Christos Meletis, Paul Bougas, George Economakos , Paraskevas Kalivas, Kiamal Pekmestzi
Abstract:
In this paper, we propose a new architecture for the implementation of the N-point Fast Fourier Transform (FFT), based on the Radix-2 Decimation in Frequency algorithm. This architecture is based on a pipeline circuit that can process a stream of samples and produce two FFT transform samples every clock cycle. Compared to existing implementations the architecture proposed achieves double processing speed using the same circuit complexity.
Keywords: Digital signal processing, systolic circuits, FFTalgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22152551 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.
Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16202550 MCDM Spectrum Handover Models for Cognitive Wireless Networks
Authors: Cesar Hernández, Diego Giral, Fernando Santa
Abstract:
Spectrum handover is a significant topic in the cognitive radio networks to assure an efficient data transmission in the cognitive radio user’s communications. This paper proposes a comparison between three spectrum handover models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handover, accumulative average of handover performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handover models was validated with captured data of spectrum occupancy in experiments performed at the GSM frequency band (824 MHz - 849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparison show that VIKOR Algorithm provides a 15.8% performance improvement compared to SAW Algorithm and, it is 12.1% better than the MEW Algorithm.Keywords: Cognitive radio, decision making, MEW, SAW, spectrum handover, VIKOR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21552549 A Novel FFT-Based Frequency Offset Estimator for OFDM Systems
Authors: Mahdi Masoumi, Mehrdad Ardebilipoor, Seyed Aidin Bassam
Abstract:
This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.
Keywords: DFT, Estimator, Frequency Offset, IEEE802.11a, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14972548 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10582547 Lego Mindstorms as a Simulation of Robotic Systems
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.
Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38352546 Transmitter Macrodiversity in Multihopping- SFN Based Algorithm for Improved Node Reachability and Robust Routing
Authors: Magnus Eriksson, Arif Mahmud
Abstract:
A novel idea presented in this paper is to combine multihop routing with single-frequency networks (SFNs) for a broadcasting scenario. An SFN is a set of multiple nodes that transmit the same data simultaneously, resulting in transmitter macrodiversity. Two of the most important performance factors of multihop networks, node reachability and routing robustness, are analyzed. Simulation results show that our proposed SFN-D routing algorithm improves the node reachability by 37 percentage points as compared to non-SFN multihop routing. It shows a diversity gain of 3.7 dB, meaning that 3.7 dB lower transmission powers are required for the same reachability. Even better results are possible for larger networks. If an important node becomes inactive, this algorithm can find new routes that a non-SFN scheme would not be able to find. Thus, two of the major problems in multihopping are addressed; achieving robust routing as well as improving node reachability or reducing transmission power.Keywords: OFDM, single-frequency networks (SFN), DSFN, MANET; multihop routing, transmitter macrodiversity, broadcasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272545 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach
Authors: Shih-Yi Chao
Abstract:
The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14572544 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options
Authors: R.Balamurugan, S.Subramanian
Abstract:
This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18952543 Using Genetic Algorithm to Improve Information Retrieval Systems
Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek
Abstract:
This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27562542 Spread Spectrum Code Estimation by Genetic Algorithm
Authors: V. R. Asghari, M. Ardebilipour
Abstract:
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.Keywords: Code estimation, genetic algorithms, spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15712541 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm
Authors: Nameer N. EL-Emam
Abstract:
In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892540 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines
Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun
Abstract:
This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.
Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9582539 Fuzzy Ideology based Long Term Load Forecasting
Authors: Jagadish H. Pujar
Abstract:
Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).
Keywords: Fuzzy Logic Control (FLC), Data DependantFactors(DDF), Model Dependent Factors(MDF), StatisticalError(SE), Short Term Load Forecasting (STLF), MiscellaneousError(ME).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24692538 Effect of Distributed Generators on the Optimal Operation of Distribution Networks
Authors: J. Olamaei , T. Niknam, M. Nayeripour
Abstract:
This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.
Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16322537 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method
Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian
Abstract:
In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.
Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21552536 Clustering Categorical Data Using Hierarchies (CLUCDUH)
Authors: Gökhan Silahtaroğlu
Abstract:
Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).Keywords: Clustering, tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15562535 A Block Cipher for Resource-Constrained IoT Devices
Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam
Abstract:
In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a layer between the encryption and decryption processes.
Keywords: Internet of Things, IoT, cryptography block cipher, s-box, key management, IoT security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5412534 Speech Intelligibility Improvement Using Variable Level Decomposition DWT
Authors: Samba Raju, Chiluveru, Manoj Tripathy
Abstract:
Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methodsKeywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6932533 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40612532 A Basic Study on Ubiquitous Overloaded Vehicles Regulation System
Authors: Byung-Wan Jo, Kwang-Won Yoon, Ji-Sun Choi
Abstract:
Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems.Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles.Therefore, this paper organized Ubiquitous sensor network system for development of intelligent overload vehicle regulation system, also in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm. And we examined wireless possibility of overloaded vehicle regulation system through experiment of the transmission and reception distance.If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system..Keywords: Overload Vehicle. Genetic Algorithm, EmbeddedSystem, Wim Sensor, overload vehicle regulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15662531 Development of Wind Turbine Simulator for Generator Torque Control
Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park
Abstract:
Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31292530 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles
Authors: Seyed Mehran Kazemi, Bahare Fatemi
Abstract:
Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.
Keywords: Genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37712529 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media
Authors: Jinghui Peng, Shanyu Tang, Jia Li
Abstract:
Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.Keywords: Steganalysis, security, fast Fourier transform, streaming media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7832528 Feasibility Study on Designing a Flat Loop Heat Pipe (LHP) to Recover the Heat from Exhaust of a Gas Turbine
Authors: M.H.Ghaffari
Abstract:
A theoretical study is conducted to design and explore the effect of different parameters such as heat loads, the tube size of piping system, wick thickness, porosity and hole size on the performance and capability of a Loop Heat Pipe(LHP). This paper presents a steady state model that describes the different phenomena inside a LHP. Loop Heat Pipes(LHPs) are two-phase heat transfer devices with capillary pumping of a working fluid. By their original design comparing with heat pipes and special properties of the capillary structure, they-re capable of transferring heat efficiency for distances up to several meters at any orientation in the gravity field, or to several meters in a horizontal position. This theoretical model is described by different relations to satisfy important limits such as capillary and nucleate boiling. An algorithm is developed to predict the size of the LHP satisfying the limitations mentioned above for a wide range of applied loads. Finally, to assess and evaluate the algorithm and all the relations considered, we have used to design a new kind of LHP to recover the heat from the exhaust of an actual Gas Turbine. By finding the results, it showed that we can use the LHP as a very high efficient device to recover the heat even in high amount of loads(exhaust of a gas turbine). The sizes of all parts of the LHP were obtained using the developed algorithm.Keywords: Loop Heat Pipe, Head Load, Liquid-Vapor Interface, Heat Transfer, Design Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072