Search results for: Cost-based structural optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2997

Search results for: Cost-based structural optimization

2127 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

Authors: Mat Syai'in, Adi Soeprijanto

Abstract:

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2126 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.

Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28
2125 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
2124 Decision Maturity Framework: Introducing Maturity In Heuristic Search

Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes

Abstract:

Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.

Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2123 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2122 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
2121 Design and Evaluation of a Pneumatic Muscle Actuated Gripper

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

Deployment of pneumatic muscles in various industrial applications is still in its early days, considering the relative newness of these components. The field of robotics holds particular future potential for pneumatic muscles, especially in view of their specific behaviour known as compliance. The paper presents and discusses an innovative constructive solution for a gripper system mountable on an industrial robot, based on actuation by a linear pneumatic muscle and transmission of motion by gear and rack mechanism. The structural, operational and constructive models of the new gripper are presented, along with some of the experimental results obtained subsequently to the testing of a prototype. Further presented are two control variants of the gripper system, one by means of a 3/2-way fast-switching solenoid valve, the other by means of a proportional pressure regulator. Advantages and disadvantages are discussed for both variants.

Keywords: Gripper system, pneumatic muscle, structural modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
2120 Construct Pairwise Test Suites Based on the Bak-Sneppen Model of Biological Evolution

Authors: Jianjun Yuan, Changjun Jiang

Abstract:

Pairwise testing, which requires that every combination of valid values of each pair of system factors be covered by at lease one test case, plays an important role in software testing since many faults are caused by unexpected 2-way interactions among system factors. Although meta-heuristic strategies like simulated annealing can generally discover smaller pairwise test suite, they may cost more time to perform search, compared with greedy algorithms. We propose a new method, improved Extremal Optimization (EO) based on the Bak-Sneppen (BS) model of biological evolution, for constructing pairwise test suites and define fitness function according to the requirement of improved EO. Experimental results show that improved EO gives similar size of resulting pairwise test suite and yields an 85% reduction in solution time over SA.

Keywords: Covering Arrays, Extremal Optimization, Simulated Annealing, Software Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2119 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2118 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

Authors: P. Subbaraj, V. Rajasekaran

Abstract:

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.

Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
2117 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: Image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
2116 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2115 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer

Abstract:

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
2114 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
2113 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz

Abstract:

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
2112 Generalized Rough Sets Applied to Graphs Related to Urban Problems

Authors: Mihai Rebenciuc, Simona Mihaela Bibic

Abstract:

Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.

Keywords: (Bi)digraphs, rough set theory, systems of interacting agents, complex systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2111 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection

Authors: N. Arulanand, K. Premalatha

Abstract:

Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.

Keywords: Cuckoo search algorithm, levy’s flight, metaheuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
2110 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

Authors: Zhang Lei, Liu Min, Liu Botao

Abstract:

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

Keywords: heat transfer, heat sink, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
2109 How Herding Bias Could be Derived from Individual Investor Types and Risk Tolerance?

Authors: Huei-Wen Lin

Abstract:

This paper is to clarify the relationship of individual investor types, risk tolerance and herding bias. The questionnaire survey investigation is conducted to collect 389 valid and voluntary individual investors and to examine how the risk tolerance plays as a mediator between four types of personality and herding bias. Based on featuring BB&K model and reviewing the prior literature of psychology, a linear structural model are constructed and further used to evaluate the path of herding formation through the analysis of Structural Equation Modeling (SEM). The results showed that more impetuous investors would be prone to herding bias directly, but rather exhibit higher risk tolerance. However, risk tolerance would fully mediate between the level of confidence (i.e., confident or anxious) and herding bias, but not mediate between the method of action (careful or impetuous) for individual investors.

Keywords: Herding, investor types, risk tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4348
2108 Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure

Authors: V. Rodas, L. Almache

Abstract:

The interaction effects between the existing soil and the substructure of a 5-story building with an underground one, were evaluated in such a way that the structural-geotechnical concepts were validated through the method of impedance factors with a program based on the method of the finite elements. The continuous wall-type foundation had a constant thickness and followed inclined and orthogonal directions, while the ground had homogeneous and medium-type characteristics. The soil considered was type C according to the Ecuadorian Construction Standard (NEC) and the corresponding foundation comprised a depth of 4.00 meters and a basement wall thickness of 40 centimeters. This project is part of a mid-rise building in the city of Azogues (Ecuador). The hypotheses raised responded to the objectives in such a way that the model implemented with springs had a variation with respect to the embedded base, obtaining conservative results.

Keywords: interaction, soil, substructure, springs, effects, modeling, embedment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
2107 Optimization of New 25A-size Metal Gasket Design Based on Contact Width Considering Forming and Contact Stress Effect

Authors: Didik Nurhadiyanto , Moch Agus Choiron , Ken Kaminishi , Shigeyuki Haruyama

Abstract:

At the previous study of new metal gasket, contact width and contact stress were important design parameter for optimizing metal gasket performance. However, the range of contact stress had not been investigated thoroughly. In this study, we conducted a gasket design optimization based on an elastic and plastic contact stress analysis considering forming effect using FEM. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. The optimum design based on an elastic and plastic contact stress was founded. Final evaluation was determined by helium leak quantity to check leakage performance of both type of gaskets. The helium leak test shows that a gasket based on the plastic contact stress design better than based on elastic stress design.

Keywords: Contact stress, metal gasket, plastic, elastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
2106 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.

Keywords: Air viscosity, design parameters, loudspeaker, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
2105 Enhancing Predictive Accuracy in Pharmaceutical Sales Through an Ensemble Kernel Gaussian Process Regression Approach

Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf

Abstract:

This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matérn, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matérn, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.

Keywords: Gaussian Process Regression, Ensemble Kernels, Bayesian Optimization, Pharmaceutical Sales Analysis, Time Series Forecasting, Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108
2104 Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

Authors: R.Mohamad Idris, A.Khairuddin, M.W.Mustafa

Abstract:

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

Keywords: ATC, Bees Algorithm, TCSC, SVC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3165
2103 P-ACO Approach to Assignment Problem in FMSs

Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh

Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2102 Evaluation of Performance Requirements for Seismic Design of Piping System

Authors: Bu Seog Ju, Woo Young Jung

Abstract:

The cost of damage to the non-structural systems in critical facilities like nuclear power plants and hospitals can exceed 80% of the total cost of damage during an earthquake. The failure of nonstructural components, especially, piping systems led to leakage of water and subsequent shut-down of hospitals immediately after the event. Consequently, the evaluation of performance of these types of structural configurations has become necessary to mitigate the risk and to achieve reliable designs. This paper focuses on a methodology to evaluate the static and dynamic characteristics of complex actual piping system based on NFPA-13 and SMACNA guidelines. The result of this study revealed that current piping system subjected to design lateral force and design spectrum based on UBC-97 was failed in both cases and mode shapes between piping system and building structure were very different

Keywords: Nonstructural component, piping, hospital, seismic, bracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2898
2101 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation

Authors: J.Dinesh Peter

Abstract:

This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.

Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
2100 Environmental Potentials within the Production of Asphalt Mixtures

Authors: Florian Gschösser, Walter Purrer

Abstract:

The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).

Keywords: Asphalt mixtures, environmental potentials, life cycle assessment, material production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
2099 The Measurement of Endogenous Higher-Order Formative Composite Variables in PLS-SEM: An Empirical Application from CRM System Development

Authors: Samppa Suoniemi, Harri Terho, Rami Olkkonen

Abstract:

In recent methodological articles related to structural equation modeling (SEM), the question of how to measure endogenous formative variables has been raised as an urgent, unresolved issue. This research presents an empirical application from the CRM system development context to test a recently developed technique, which makes it possible to measure endogenous formative constructs in structural models. PLS path modeling is used to demonstrate the feasibility of measuring antecedent relationships at the formative indicator level, not the formative construct level. Empirical results show that this technique is a promising approach to measure antecedent relationships of formative constructs in SEM.

Keywords: CRM system development, formative measures, PLS path modeling, research methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
2098 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251