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Abstract—This research employs Gaussian Process Regression
(GPR) with an ensemble kernel, integrating Exponential Squared,
Revised Matérn, and Rational Quadratic kernels to analyze
pharmaceutical sales data. Bayesian optimization was used to identify
optimal kernel weights: 0.76 for Exponential Squared, 0.21 for
Revised Matérn, and 0.13 for Rational Quadratic. The ensemble
kernel demonstrated superior performance in predictive accuracy,
achieving an R² score near 1.0, and significantly lower values in MSE,
MAE, and RMSE. These findings highlight the efficacy of ensemble
kernels in GPR for predictive analytics in complex pharmaceutical
sales datasets.
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I. INTRODUCTION

PHARMACEUTICAL data and time series analysis are

pivotal in the healthcare sector, offering profound

insights into drug development, patient care, and market

trends. In pharmaceutical data, information ranges from

drug efficacy and safety profiles to patient health outcomes

and market dynamics. Time series analysis, a method

of analyzing data points collected or recorded at regular

time intervals, plays a crucial role in understanding these

aspects. It allows researchers and healthcare professionals

to observe trends, seasonal patterns, and long-term changes

in pharmaceutical data, enabling them to make data-driven

decisions. This approach is particularly valuable in monitoring

drug performance over time, understanding patient response

to treatments, and predicting future market needs. Fig. 1

illustrates the variation in pharmaceutical sales across different

states in the United States, highlighting the geographical

differences in market dynamics. Time series analysis in

pharmaceuticals is not just about handling large volumes of

data; it is about extracting meaningful patterns and insights

that can lead to more effective treatments and strategies in

healthcare [1], [2].
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Analyzing time series in pharmaceutical sales data presents

distinct challenges, underscored by the complexity and

volatility of the market. A primary challenge lies in

accommodating the unpredictable fluctuations in demand,

influenced by factors like market trends, regulatory changes,

and competitive dynamics. The uncertainty is further amplified

by external variables such as healthcare policies, economic

conditions, and public health crises, which can drastically

impact sales patterns. Another hurdle is the seasonality of

certain medications, where sales peak during specific times of

the year, requiring sophisticated models to accurately forecast

trends [3]–[5].

Fig. 1 Sales of Pharmaceutical Products Across Various States in
the United States [11]

Additionally, data inconsistency and incompleteness, often

due to varying reporting standards across regions and channels,

can complicate the analysis. These challenges necessitate

advanced analytical techniques and robust data-handling

strategies to extract reliable insights and forecasts from

pharmaceutical sales time series.

Time series analysis in the pharmaceutical industry,

particularly in sales data, has been a topic of interest in both

classic and modern literature. Classic methods often involve

statistical models such as Autoregressive Integrated Moving

Average (ARIMA), Seasonal Autoregressive Integrated

Moving Average (SARIMA), and Autoregressive Moving

Average (ARMA). These models are renowned for their

proficiency in identifying linear sequences in time-series

data. Yet, their predictive accuracy might be compromised

due to presumptions of immediate reactions. Conversely,

contemporary approaches have embraced machine learning

and deep learning methodologies. For example, employing
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both basic and complex neural networks for anticipating

demand has been a recent trend. These models focus on

devising strategies for sales and marketing by assessing the

periodic and trend-related influences on different categories

of pharmaceutical items. Research has demonstrated that

Demand Forecast Models (DFMs) grounded in basic neural

networks are capable of precisely forecasting future needs for

pharmaceutical products. Furthermore, innovative combined

neural network models have been crafted to effectively track

both straightforward and complex patterns in sales data [3].

Other modern methods include Holt-Winter Exponential

Smoothing, Linear Regression, Artificial Neural Network, and

XGBoost. Both classic and modern methods of time series

analysis play crucial roles in the pharmaceutical industry,

particularly in sales data forecasting. They provide valuable

insights that can help companies make informed decisions

and strategies [6]–[10].

In this paper, we aim to harness the power of Bayesian

models and Gaussian Process Regression (GPR) for time series

analysis. Bayesian models are particularly advantageous as

they provide a formal way to incorporate prior information,

fit perfectly with sequential learning and decision-making, and

lead to exact small sample results. They also allow us to take

advantage of the association structure among target series,

select important features, and train the data-driven model

simultaneously. GPR, on the other hand, is a powerful tool

for modeling correlated observations, including time series. It

provides a prior over functions, capturing prior beliefs about

the function behavior, such as smoothness or periodicity. This

allows us to perform robust modeling even in highly uncertain

situations. These methods are well-suited to the dynamic,

noisy, and time-sensitive environments often encountered in

time series analysis.

In this paper, our contributions are threefold. First, we

utilize Gaussian Process Regression (GPR) as a powerful

tool for time series analysis. Second, we employ different
kernels and introduce an ensemble kernel, which combines

the strengths of individual kernels to capture more complex

patterns in the data. Third, we leverage Bayesian optimization
to find the optimal weights of the kernels in the ensemble

kernel in GPR, thereby fine-tuning our model to the specific

characteristics of the data. Finally, we evaluate our approach

using general metrics, demonstrating that our ensemble method
outperforms the individual kernels.

A. Neural Networks vs. Gaussian Processes in Time Series
Analysis

In the context of time series analysis, the distinction

between neural networks and Bayesian methods like Gaussian

processes becomes particularly pronounced. Neural networks,

especially recurrent neural networks (RNNs) and their

variants like Long Short-Term Memory (LSTM) networks,

are highly effective for time series forecasting. They excel

in capturing complex temporal dependencies and patterns

in large datasets, making them ideal for applications like

stock market prediction or weather forecasting. Conversely,

Gaussian processes, embodying a Bayesian approach, excel

in modeling time series data where uncertainty quantification

is crucial. They provide a probabilistic forecast and are

particularly valuable in scenarios with sparse or irregularly

sampled data. Gaussian processes are also favored for their

ability to incorporate prior knowledge about the time series

through the kernel function, offering a more interpretable

model compared to the often ”black-box” nature of deep

neural networks. Thus, while neural networks are suited for

large-scale, complex temporal pattern modeling, Gaussian

processes offer robust and interpretable solutions for time

series forecasting, especially when dealing with uncertainty

and requiring insights into the model’s behavior.

B. Detailed Exposition of Gaussian Processes
Gaussian Processes (GPs), integral to machine learning,

especially in regression and classification, are particularly

valuable for analyzing time series. Defined as a collection

of random variables, where any finite number have a joint

Gaussian distribution, GPs are characterized by two primary

components: a mean function, typically denoted μ(x), and a

covariance function, or kernel, represented as κ(x, x′).

g(x) ∼ GP (μ(x), κ(x, x′)) (1)

Here, g(x) symbolizes the Gaussian Process, with GP
indicating a Gaussian Process. The mean function μ(x)
is often assumed to be zero, as GPs can encapsulate the

mean adequately through the covariance function. The kernel

κ(x, x′) is crucial as it determines how similar input points

are considered in the process.
Kernels like the Squared Exponential, Matérn, and Rational

Quadratic are pivotal in GP models. They encode assumptions

about the target function and are selected based on the data

characteristics and desired function properties.
For a dataset D = {(xi, yi)}ni=1 with yi as observations

and xi as inputs, the joint distribution of observed targets and

function values at a new point x∗ is modeled as:

(
y

g(x∗)

)
∼ N

(
0,

(
κ(X,X) + ε2I κ(X,x∗)

κ(x∗, X) κ(x∗, x∗)

))
(2)

In this model, y represents the observed values, κ(X,X)
is the covariance matrix from the kernel function applied to

all training input pairs, ε2 denotes noise variance, and I is the

identity matrix. κ(X,x∗) and κ(x∗, X) are the covariances

between training inputs and the test input.
Predictions for a new test point x∗ are derived by

conditioning this joint Gaussian distribution on the observed

data.

C. Insight into Gaussian Process Kernels
The effectiveness of a Gaussian Process (GP) in

modeling depends significantly on its kernel, also known

as the covariance function. These kernels define crucial

characteristics like the function’s smoothness and variability.

This section delves into three prevalent kernels: the

Exponential Squared (ES) kernel, the Matérn kernel, and

the Rational Quadratic (RQ) kernel, adapting to the revised

notation.
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Fig. 2 Time series forecast with an ensemble kernel Gaussian
Process Regression approach

1) Exponential Squared (ES) Kernel: Previously referred to

as the SE kernel, the ES kernel is formulated as:

κES(x, x
′) = α2 exp

(
−‖x− x′‖2

2λ2

)
(3)

where α2 represents the variance and λ is the length-scale. Its

infinite differentiability renders it exceptionally smooth and is

thus favored for its simplicity and elegant properties.

2) Revised Matérn Kernel: The Matérn kernel, under the

new notation, is expressed as:

κMatérn(x, x
′) = α2 2

1−ν

Γ(ν)

(√
2ν‖x− x′‖

λ

)ν

×Kν

(√
2ν‖x− x′‖

λ

) (4)

In this formulation, α2 is the variance, λ is the length-scale,

and ν is the smoothness parameter. The Matérn kernel provides

a flexible smoothness control, making it a generalization of the

ES kernel.

3) Rational Quadratic (RQ) Kernel: The RQ kernel, under

the updated notation, is written as:

κRQ(x, x
′) = α2

(
1 +

‖x− x′‖2
2βλ2

)−β

(5)

Here, α2 is the variance, λ the length-scale, and β a

parameter influencing the mixture of scales. The RQ kernel

is valuable for modeling functions with heterogeneous levels

of smoothness.

Each kernel encodes distinct assumptions about the function

and influences the learning and generalization capacity of the

GP. Their selection hinges on the data’s nature and the desired

characteristics of the function to be modeled.

D. Ensemble Kernel Method in Gaussian Processes

The Ensemble Kernel Method in Gaussian Processes (GPs)

combines multiple kernels to create a more robust and flexible

model. This approach allows for capturing a broader range of

features in the data. The ensemble kernel, κensemble(x, x
′),

is formulated by combining different kernels, each with their

unique characteristics. A common ensemble approach is the

linear combination of kernels:

κensemble(x, x
′) =

N∑
i=1

wiκi(x, x
′) (6)

where N is the number of kernels in the ensemble, wi are

the weights assigned to each kernel κi(x, x
′), and each κi is

a distinct kernel like the Exponential Squared (ES), Matérn,

or Rational Quadratic (RQ) kernel. The weights wi are often

learned from data, allowing the model to adaptively emphasize

different characteristics captured by each kernel.

To optimize the ensemble kernel, parameters of individual

kernels and the ensemble weights or powers are typically tuned

using Bayesian Optimization with Gaussian Process priors.

This method involves constructing a probabilistic model of the

objective function and using it to select the most promising

parameters to evaluate in the real world, balancing the trade-off

between exploration and exploitation.

The Ensemble Kernel Method enhances the adaptability and

expressiveness of GPs, making it suitable for sophisticated

modeling tasks, especially in scenarios where data exhibits

a mix of different behaviors or patterns.

E. Bayesian Optimization with Gaussian Process Priors

Bayesian Optimization (BO) is a strategy for the global

optimization of black-box functions that are expensive to

evaluate, particularly suited for hyperparameter tuning in

machine learning. The method employs a Gaussian Process

(GP) as a probabilistic model to estimate the unknown

objective function.

1) Gaussian Process as a Surrogate Model: A GP acts as

a surrogate model in BO. It is defined by (1).

2) Bayesian Update and Acquisition Function: The GP is

updated as new evaluations are observed, forming a posterior

distribution. The next sampling point is chosen using an

acquisition function a(x), which balances exploration and

exploitation. A common acquisition function is the Expected

Improvement:

EI(x) = E
[
max(f(x)− f(x+), 0)

]
(7)

where f(x+) is the current best observation. The optimization

of the ensemble kernel using the BO Algorithm is detailed in

Algorithm 1.

3) Advantages and Applications: This optimization

approach is highly effective in scenarios with expensive

evaluations, scarce data, or complex high-dimensional spaces.

Its applications range from tuning machine learning models to

optimizing processes in material science and pharmaceuticals.

Implementing BO with GP priors requires careful selection

of the kernel and acquisition function, ensuring effective

exploration of the parameter space and convergence to optimal

solutions.

Fig. 2 illustrates the entire process of time series forecasting.

Initially, data are fed into the Gaussian Process (GP) model,

followed by the application of the ensemble kernel to this

model. The weights of the kernels are then optimized using

Bayesian optimization, aiming to minimize the error and

effectively determine the optimal time series.

F. Evaluation Metrics

To ensure accurate and reliable predictions from our

Gaussian Process models, we utilize three fundamental
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Algorithm 1 Optimization of Kernel Weight in Gaussian

Process

1: procedure OPTIMIZEKERNELWEIGHT(Data,Model, Range, Iterations)

2: Initialize Bayesian Optimization: BayesOptGP
3: best ω ← null

4: maxScore ← −∞ for i ← 1 to Iterations do
5:

ω ← AcquireThreshold(BayesOptGP , Range)

6: score ← EvaluateModel(Data, Model, ω) if score >
maxScore then

7:

maxScore ← score
8: best ω ← ω
9:

10: UpdateBayesOptGP(BayesOptGP , ω, score)

11:

12: return best ω
13: end procedure

metrics: Mean Squared Error (MSE), Mean Absolute Error

(MAE), and the R2 score. The MSE, represented by MSE =
1
n

∑n
i=1(yi − ŷi)

2, quantifies the average squared difference

between actual and estimated values, with a lower value

indicating a better fit. The MAE, given by MAE =
1
n

∑n
i=1 |yi − ŷi|, computes the average absolute difference

and is less influenced by outliers. Lastly, the R2 score or

coefficient of determination, expressed as R2 = 1 − SSres

SStot
,

measures the variance proportion that’s predictable, with a

score closer to 1 denoting an excellent fit. Collectively, these

metrics offer insights into the model’s performance, guiding

potential refinements and ensuring prediction dependability.

II. SIMULATION & RESULTS

A. Categorization and Time Series Analysis of
Pharmaceutical Sales Data

The initial dataset [12], comprising 600,000 transactional

records from 2014 to 2019, includes details like the sale

date, time, pharmaceutical brand, and quantity. Based on

pharmacists’ insights, the study pivoted from individual

drugs to drug categories for better analysis and forecasting.

This led to the classification of 57 drugs into 8

ATC categories: M01AB (non-steroid anti-inflammatory and

antirheumatic products, Acetic acid derivatives), M01AE

(non-steroid anti-inflammatory and antirheumatic products,

Propionic acid derivatives), N02BA (other analgesics and

antipyretics, Salicylic acid and derivatives), N02BE/B (other

analgesics and antipyretics, Pyrazolones and Anilides), N05B

(psycholeptic drugs, Anxiolytic drugs), N05C (psycholeptic

drugs, Hypnotics and sedatives), R03 (drugs for obstructive

airway diseases), and R06 (Antihistamines for systemic use).

Time series analysis of these categories is illustrated in Fig.

3. In our study, we focused on analyzing the model based

on GPR with various kernels, selecting the M01AB category

(non-steroid anti-inflammatory and antirheumatic products,

Acetic acid derivatives) for a detailed study. To ensure a

comprehensive analysis, we employed a high-volume sampling

method from this category. This approach involved randomly

geeeeeeee II, I, IIIIIIIIIIIIIIIIIIIIItet rararaarararararararararaararararaararaaraaraaaraaaarrraaarr tititititititititititititittitititititittitititttttiitiititititiittitttttttt onononononoonononnonoonnononononononononnnononnnnnonnooooono ssssssssssssssssssssssssssssss)))))))))))))))))))))))))))))))

Fig. 3 Time Series Analysis of Pharmaceutical Sales by ATC
Categories

selecting a substantial number of samples from the dataset,

ensuring a representative subset that captures the diverse

trends and patterns within the M01AB category. By using

high-volume sampling, we aimed to provide a robust and

reliable analysis, minimizing the potential for sampling bias

and ensuring that our findings are reflective of the broader

trends in this pharmaceutical category.

In Fig. 4, we showcase the application of GPR with

four distinct kernels—Exponential Squared, Revised Matern,

Rational Quadratic, and an ensemble of these kernels—on

samples from the M01AB category. Bayesian optimization was

employed to determine the optimal weights for combining

these kernels. The choice of these kernels was strategic:

the RBF kernel is known for its smoothness and flexibility

in modeling data; the Revised Matern kernel offers control

over the smoothness of the function, making it versatile;

the Rational Quadratic kernel can model varied levels of

smoothness within the data. The ensemble approach combines

these strengths, aiming to capture a comprehensive range of

patterns and trends in the data, thus enhancing the model’s

predictive power and robustness.

In the Bayesian optimization of our ensemble kernel, the

assigned weights (ω) were 0.66 for the RBF kernel, 0.21

for the Revised Matern, and 0.13 for the Rational Quadratic

kernel. The predominance of the Exponential Squared kernel
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Fig. 4 Gaussian Process Regression Analysis Using RBF, Revised
Matern, Rational Quadratic Kernels, and Their Ensemble

underscores its effectiveness in modeling the core patterns in

the data. The inclusion of the Revised Matern and Rational

Quadratic kernels, albeit with lower weights, is crucial for

their ability to handle data with varying smoothness and scale.

Importantly, this ensemble approach significantly contributes

to capturing and quantifying the uncertainty inherent in

pharmaceutical sales data, enhancing the model’s overall

predictive accuracy and robustness in facing diverse data

scenarios.

In Fig. 5, we analyze the performance of various kernels

Fig. 5 Comparative Analysis of GPR Kernels Using MSE, MAE,
RMSE, and R2 Metrics

in Gaussian Process Regression (GPR) using metrics such

as MSE, MAE, RMSE, and R-squared (R²). The Ensemble

kernel exhibits exceptional performance, achieving an MSE of

9.09×10−21, MAE of 7.48×10−11, RMSE of 9.53×10−11,

and a perfect R² score of 1.0. In comparison, the Exponential

Squared kernel records an MSE of 3.45 × 10−19, MAE of

5.29 × 10−10, and RMSE of 6.02 × 10−10, with an R² of

0.95. Similar trends are observed with the Revised Matérn

and Rational Quadratic kernels, where the Revised Matérn

shows an MSE of 2.87×10−19, MAE of 4.26×10−10, RMSE

of 5.49 × 10−10, and the Rational Quadratic has an MSE of

8.59×10−20, MAE of 2.35×10−10, RMSE of 3.00×10−10,

both with R² scores of 0.95. These results clearly demonstrate

the superior accuracy of the Ensemble kernel in our GPR

model.

III. CONCLUSION

This study demonstrates the potential of ensemble

kernels in Gaussian Process Regression for enhancing

predictive analytics in pharmaceutical sales. The integration

of Exponential Squared, Revised Matérn, and Rational
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Quadratic kernels, optimized through Bayesian techniques, led

to a model with remarkable accuracy, as evidenced by its

performance metrics. Our approach not only addresses the

complexities inherent in pharmaceutical sales data but also sets

a precedent for future research in advanced time series analysis

using ensemble kernels in GPR. This methodology could be

pivotal in refining predictive models in various data-intensive

fields.
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