Search results for: sample weights
1433 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function
Authors: Anupama Pande, Vishik Goel
Abstract:
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.
Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24111432 Utilizing Analytic Hierarchy Process to Analyze Consumers- Purchase Evaluation Factors of Smartphones
Authors: Yi-Chung Hu, Yu-Lin Liao
Abstract:
Due to the fast development of technology, the competition of technological products is turbulent; therefore, it is important to understand the market trend, consumers- demand and preferences. As the smartphones are prevalent, the main purpose of this paper is to utilize Analytic Hierarchy Process (AHP) to analyze consumer-s purchase evaluation factors of smartphones. Through the AHP expert questionnaire, the smartphones- main functions are classified as “user interface", “mobile commerce functions", “hardware and software specifications", “entertainment functions" and “appearance and design", five aspects to analyze the weights. Then four evaluation criteria are evaluated under each aspect to rank the weights. Based on an analysis of data shows that consumers consider when purchase factors are “hardware and software specifications", “user interface", “appearance and design", “mobile commerce functions" and “entertainment functions" in sequence. The “hardware and software specifications" aspect obtains the weight of 33.18%; it is the most important factor that consumers are taken into account. In addition, the most important evaluation criteria are central processing unit, operating system, touch screen, and battery function in sequence. The results of the study can be adopted as reference data for mobile phone manufacturers in the future on the design and marketing strategy to satisfy the voice of customer.Keywords: Analytic Hierarchy Process (AHP), evaluation criteria, purchase evaluation factors, smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32401431 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10401430 A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18um CMOS
Authors: Sanaz Haddadian, Rahele Hedayati
Abstract:
A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).
Keywords: Analog Integrated Circuit Design, Sample & Hold Amplifier and CMOS Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41621429 An Investigation of the Relationship between the Need for Cognitive Closure and Religious Fundamentalism
Authors: Hadi G. Altabatabaei, Nguyen L. L. Anh
Abstract:
There are positive significant relationships between the Need for Cognitive Closure (NFC) and Religious Fundamentalism (RF) among students. The preliminary assumption of the current study was: There would be a stronger pattern of association between these constructs, if the participants of the study are more exposed to the study's main concept which is religiosity. In other words, close-mindedness would be more related to homogeneous samples of practicing devotees of monotheistic religions compared to student samples. The main hypothesis was that concerning the Muslim sample, there will be a significant and positive correlation between the need for closure (and all facets of it, except decisiveness) and RF. Both the student sample (n=88), and the Muslim practicing mosque attending sample (n=40), were administrated three scales of Need for Closure (NFCS), Religious Fundamentalism (RFS), and Four Basic Dimensions of Religiousness (FBDRS). The results of the study moderately confirmed the hypothesis and showed a positive correlation between NFCS and RFS with the Muslim sample. Specifically, preference for order, preference for predictability and discomfort with ambiguity facets of the NFCS positively correlated with RFS. However, with regards to the student sample such relationships between the constructs were not found.
Keywords: Religiosity, close-mindedness, religious fundamentalism, need for closure, monotheistic religions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971428 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871427 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23421426 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3871425 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10861424 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.
Keywords: Cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991423 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17661422 Osmotic Dehydration of Beetroot in Salt Solution: Optimization of Parameters through Statistical Experimental Design
Authors: P. Manivannan, M. Rajasimman
Abstract:
Response surface methodology was used for quantitative investigation of water and solids transfer during osmotic dehydration of beetroot in aqueous solution of salt. Effects of temperature (25 – 45oC), processing time (30–150 min), salt concentration (5–25%, w/w) and solution to sample ratio (5:1 – 25:1) on osmotic dehydration of beetroot were estimated. Quadratic regression equations describing the effects of these factors on the water loss and solids gain were developed. It was found that effects of temperature and salt concentrations were more significant on the water loss than the effects of processing time and solution to sample ratio. As for solids gain processing time and salt concentration were the most significant factors. The osmotic dehydration process was optimized for water loss, solute gain, and weight reduction. The optimum conditions were found to be: temperature – 35oC, processing time – 90 min, salt concentration – 14.31% and solution to sample ratio 8.5:1. At these optimum values, water loss, solid gain and weight reduction were found to be 30.86 (g/100 g initial sample), 9.43 (g/100 g initial sample) and 21.43 (g/100 g initial sample) respectively.Keywords: Optimization, Osmotic dehydration, Beetroot, saltsolution, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34591421 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.
Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871420 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder
Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf
Abstract:
In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.
Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511419 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level
Authors: Mefleh S. Hamideen
Abstract:
In this investigation, activity concentration of 226Ra, 232Th, and 40K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of different country of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg-1 (Sample from Jordan) to 98 Bq.kg-1 (Sample from China) for 226Ra, 31 Bq.kg-1 (Sample from Italy) to 98 Bq.kg-1 (Sample from China) for 232Th, and 129 Bq.kg-1 (Sample from Spain) to 679 Bq.kg-1 (Sample from Italy) for 40K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.
Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5421418 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition
Authors: Hazem M. El-Bakry
Abstract:
Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371417 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads
Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad
Abstract:
Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.Keywords: Reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25931416 Co-Administration Effects of Conjugated Linoleic Acid and L-Carnitine on Weight Gain and Biochemical Profile in Diet Induced Obese Rats
Authors: Maryam Nazari, Majid Karandish, Alihossein Saberi
Abstract:
Obesity as a global health challenge motivates pharmaceutical industries to produce anti-obesity drugs. However, effectiveness of these agents is remained unclear. Because of popularity of dietary supplements, the aim of this study was tp investigate the effects of Conjugated Linoleic Acid (CLA) and L-carnitine (LC) on serum glucose, triglyceride, cholesterol and weight changes in diet induced obese rats. 48 male Wistar rats were randomly divided into two groups: Normal fat diet (n=8), and High fat diet (HFD) (n=32). After eight weeks, the second group which was maintained on HFD until the end of study, was subdivided into four categories: a) 500 mg Corn Oil (as control group), b) 500 mg CLA, c) 200 mg LC, d) 500 mg CLA+ 200 mg LC.All doses are planned per kg body weights, which were administered by oral gavage for four weeks. Body weights were measured and recorded weekly by means of a digital scale. At the end of the study, blood samples were collected for biochemical markers measurement. SPSS Version 16 was used for statistical analysis. At the end of 8th week, a significant difference in weight was observed between HFD and NFD group. After 12 weeks, LC significantly reduced weight gain by 4.2%. Trend of weight gain in CLA and CLA+LC groups was insignificantly decelerated. CLA+LC reduced triglyceride level significantly, but just CLA had significant influence on total cholesterol and insignificant decreasing effect on FBS. Our results showed that an obesogenic diet in a relative short time led to obesity and dyslipidemia which can be modified by LC and CLA to some extent.
Keywords: Conjugated linoleic acid, high fat diet, L-carnitine, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421415 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28301414 A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding
Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf
Abstract:
In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.
Keywords: DWT, linear-phase 9/7 filter, Foveation Filtering, CSF implementation approaches, 9/7 Wavelet JND Thresholds and Wavelet Error Sensitivity WES, Luminance and Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951413 Software Product Quality Evaluation Model with Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a software product quality evaluation model based on the ISO/IEC 25010 quality model. The evaluation characteristics and sub characteristics were identified from the ISO/IEC 25010 quality model. The multidimensional structure of the quality model is based on characteristics such as functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability, and associated sub characteristics. Random numbers are generated to establish the decision maker’s importance weights for each sub characteristics. Also, random numbers are generated to establish the decision matrix of the decision maker’s final scores for each software product against each sub characteristics. Thus, objective criteria importance weights and index scores for datasets were obtained from the random numbers. In the proposed model, five different software product quality evaluation datasets under three different weight vectors were applied to multiple criteria decision analysis method, preference analysis for reference ideal solution (PARIS) for comparison, and sensitivity analysis procedure. This study contributes to provide a better understanding of the application of MCDMA methods and ISO/IEC 25010 quality model guidelines in software product quality evaluation process.
Keywords: ISO/IEC 25010 quality model, multiple criteria decisions making, multiple criteria decision making analysis, MCDMA, PARIS, Software Product Quality Evaluation Model, Software Product Quality Evaluation, Software Evaluation, Software Selection, Software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4481412 Salinity on Survival and Early Development of Biofuel Feedstock Crops
Authors: Vincent M. Russo
Abstract:
Salinity level may affect early development of biofuel feedstock crops. The biofuel feedstock crops canola (Brassica napus L.), sorghum [Sorghum bicolor (L.) Moench], and sunflower (Helianthus annuus L.); and the potential feedstock crop sweet corn (Zea mays L.) were planted in media in pots and treated with aqueous solutions of 0, 0.1, 0.5 and 1.0 M NaCl once at: 1) planting; 2) 7-10 days after planting or 3) first true leaf expansion. An additional treatment (4) comprised of one-half strength of the 0.1, 0.5 and 1.0 M (concentrations 0.05, 0.25, 0.5 M at each application) was applied at first true leaf expansion and four days later. Survival of most crops decreased below 90% above 0.5 M; survival of canola decreased above 0.1 M. Application timing had little effect on crop survival. For canola root fresh and dry weights improved when application was at plant emergence; for sorghum top and root fresh weights improved when the split application was used. When application was at planting root dry weight was improved over most other applications. Sunflower top fresh weight was among the highest when saline solutions were split and top dry weight was among the highest when application was at plant emergence. Sweet corn root fresh weight was improved when the split application was used or application was at planting. Sweet corn root dry weight was highest when application was at planting or plant emergence. Even at high salinity rates survival rates greater than what might be expected occurred. Plants that survived appear to be able to adjust to saline during the early stages of development.Keywords: Canola, Development, Sorghum, Sunflower, Sweetcorn, Survival
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281411 Hybrid Methods for Optimisation of Weights in Spatial Multi-Criteria Evaluation Decision for Fire Risk and Hazard
Authors: I. Yakubu, D. Mireku-Gyimah, D. Asafo-Adjei
Abstract:
The challenge for everyone involved in preserving the ecosystem is to find creative ways to protect and restore the remaining ecosystems while accommodating and enhancing the country social and economic well-being. Frequent fires of anthropogenic origin have been affecting the ecosystems in many countries adversely. Hence adopting ways of decision making such as Multicriteria Decision Making (MCDM) is appropriate since it will enhance the evaluation and analysis of fire risk and hazard of the ecosystem. In this paper, fire risk and hazard data from the West Gonja area of Ghana were used in some of the methods (Analytical Hierarchy Process, Compromise Programming, and Grey Relational Analysis (GRA) for MCDM evaluation and analysis to determine the optimal weight method for fire risk and hazard. Ranking of the land cover types was carried out using; Fire Hazard, Fire Fighting Capacity and Response Risk Criteria. Pairwise comparison under Analytic Hierarchy Process (AHP) was used to determine the weight of the various criteria. Weights for sub-criteria were also obtained by the pairwise comparison method. The results were optimised using GRA and Compromise Programming (CP). The results from each method, hybrid GRA and CP, were compared and it was established that all methods were satisfactory in terms of optimisation of weight. The most optimal method for spatial multicriteria evaluation was the hybrid GRA method. Thus, a hybrid AHP and GRA method is more effective method for ranking alternatives in MCDM than the hybrid AHP and CP method.
Keywords: Compromise programming, grey relational analysis, spatial multi-criteria, weight optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6561410 Towards the Integration of a Micro Pump in μTAS
Authors: Y. Haik
Abstract:
The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.
Keywords: Crescent micropumps, microanalysis, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7141409 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.
Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081408 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27251407 Effect of adding Supercritical Carbon Dioxide Extracts of Cinnamomum tamala (Bay Leaf) on Nutraceutical Property of Tofu
Authors: Sudip Ghosh, Probir Kumar Ghosh, Paramita Bhattacharjee
Abstract:
Supercritical carbon dioxide extracts of Cinnamomum tamala (bay) leaves obtained at 55°C, 512 bar was found to have appreciable nutraceutical properties and was successfully employed as value-added ingredients in preparation of tofu. The bay leaf formulated tofu sample was evaluated for physicochemical properties (pH, texture analysis and lipid peroxidation), proximate analysis, phytochemical properties (total phenol content, antioxidant properties and total reducing sugar), microbial load and sensory profile analysis for a storage period of ten days, vis-à-vis an experimental control sample. These assays established the superiority of the tofu sample formulated with supercritical carbon dioxide extract of bay leaf over the control sample. Bay leaf extract formulated tofu is a new green functional food with promising nutraceutical benefits.
Keywords: Cinnamomum tamala, Physicochemical properties Phytochemical properties, Supercritical carbon dioxide extraction, Tofu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051406 Comparative Analysis of Diversity and Similarity Indices with Special Relevance to Vegetations around Sewage Drains
Authors: Ekta Singh
Abstract:
Indices summarizing community structure are used to evaluate fundamental community ecology, species interaction, biogeographical factors, and environmental stress. Some of these indices are insensitive to gross community changes induced by contaminants of pollution. Diversity indices and similarity indices are reviewed considering their ecological application, both theoretical and practical. For some useful indices, empirical equations are given to calculate the expected maximum value of the indices to which the observed values can be related at any combination of sample sizes at the experimental sites. This paper examines the effects of sample size and diversity on the expected values of diversity indices and similarity indices, using various formulae. It has been shown that all indices are strongly affected by sample size and diversity. In some indices, this influence is greater than the others and an attempt has been made to deal with these influences.Keywords: Biogeographical factors, Diversity Indices, Ecology and Similarity Indices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29941405 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.
Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6991404 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method
Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý
Abstract:
The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.
Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896