Search results for: diffusion equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1573

Search results for: diffusion equations

1513 Strict Stability of Fuzzy Differential Equations with Impulse Effect

Authors: Sanjay K.Srivastava, Bhanu Gupta

Abstract:

In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.

Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1512 Toward a New Simple Analytical Formulation of Navier-Stokes Equations

Authors: Gunawan Nugroho, Ahmed M. S. Ali, Zainal A. Abdul Karim

Abstract:

Incompressible Navier-Stokes equations are reviewed in this work. Three-dimensional Navier-Stokes equations are solved analytically. The Mathematical derivation shows that the solutions for the zero and constant pressure gradients are similar. Descriptions of the proposed formulation and validation against two laminar experiments and three different turbulent flow cases are reported in this paper. Even though, the analytical solution is derived for nonreacting flows, it could reproduce trends for cases including combustion.

Keywords: Navier-Stokes Equations, potential function, turbulent flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
1511 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho

Abstract:

This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1510 Solving Linear Matrix Equations by Matrix Decompositions

Authors: Yongxin Yuan, Kezheng Zuo

Abstract:

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
1509 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions

Authors: Adil Al-Rammahi

Abstract:

Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.

Keywords: Differential Equations, Laplace Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
1508 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

These days, the field of tissue engineering is getting serious attention due to its usefulness. Bone tissue engineering helps to address and sort-out the critical sized and non-healing orthopedic problems by the creation of manmade bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature “parametric sweep”, with which we will be able to predict the oxygen, glucose and cell density dynamics, more accurately. We will fix these problems by modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes and by transient analysis.

Keywords: Bone tissue engineering, Transient Analysis, Scaffolds, fabrication techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
1507 On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

Authors: M. W. Lau, C. O. Ng

Abstract:

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say Da ≥ 10); (ii) a small but non-zero value of absorption rate (say Γ* ≤ 0.5).

Keywords: Dispersion coefficient, early development of dispersion, FCTA, wall reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
1506 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion

Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta

Abstract:

Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.

Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
1505 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.

Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1504 Maxwell-Cattaneo Regularization of Heat Equation

Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman

Abstract:

This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.

Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5059
1503 Natural Flickering of Methane Diffusion Flames

Authors: K. R. V. Manikantachari, Vasudevan Raghavan, K. Srinivasan

Abstract:

Present study focuses on studying the oscillatory behavior of jet diffusion flames. At a particular jet exit velocity, the flames are seen to exhibit natural flickering. Initially the flickering process is not continuous. In this transition region as well as in the continuous flickering regime, the flickering displays multiple frequency oscillations. The response of the flame to the exit velocity profile of the burner is also studied using three types of burners. The entire range of natural flickering is investigated by capturing high speed digital images and processing them using a MATLAB code.

Keywords: Diffusion flames, Natural flickering, flickering frequency, intermittent flickering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
1502 New Application of EHTA for the Generalized(2+1)-Dimensional Nonlinear Evolution Equations

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota-s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.

Keywords: EHTA, (2+1)-dimensional CBS equations, (2+1)-dimensional breaking solution equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1501 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Authors: Hailong Zhu, Zhaoxiang Li

Abstract:

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).

Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1500 Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation

Authors: M. Zarebnia, S. Khani

Abstract:

In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.

Keywords: Hammerstein integral equations, quasi-interpolation, Nystrom’s method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4472
1499 A Modification on Newton's Method for Solving Systems of Nonlinear Equations

Authors: Jafar Biazar, Behzad Ghanbari

Abstract:

In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.

Keywords: System of nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1498 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
1497 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
1496 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1495 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations

Authors: N. Ebrahimi, J. Rashidinia

Abstract:

In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.

Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1494 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: M. Breška, I. Peruš, V. Stankovski

Abstract:

The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1493 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors

Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez

Abstract:

For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.

Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
1492 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1491 On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields

Authors: Nisha Goyal, R.K. Gupta

Abstract:

Einstein vacuum equations, that is a system of nonlinear partial differential equations (PDEs) are derived from Weyl metric by using relation between Einstein tensor and metric tensor. The symmetries of Einstein vacuum equations for static axisymmetric gravitational fields are obtained using the Lie classical method. We have examined the optimal system of vector fields which is further used to reduce nonlinear PDE to nonlinear ordinary differential equation (ODE). Some exact solutions of Einstein vacuum equations in general relativity are also obtained.

Keywords: Gravitational fields, Lie Classical method, Exact solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1490 On the System of Nonlinear Rational Difference Equations

Authors: Qianhong Zhang, Wenzhuan Zhang

Abstract:

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

Keywords: Difference equations, stability, unstable, global asymptotic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1489 Closed Form Solution to problem of Calcium Diffusion in Cylindrical Shaped Neuron Cell

Authors: Amrita Tripathi, Neeru Adlakha

Abstract:

Calcium [Ca2+] dynamics is studied as a potential form of neuron excitability that can control many irregular processes like metabolism, secretion etc. Ca2+ ion enters presynaptic terminal and increases the synaptic strength and thus triggers the neurotransmitter release. The modeling and analysis of calcium dynamics in neuron cell becomes necessary for deeper understanding of the processes involved. A mathematical model has been developed for cylindrical shaped neuron cell by incorporating physiological parameters like buffer, diffusion coefficient, and association rate. Appropriate initial and boundary conditions have been framed. The closed form solution has been developed in terms of modified Bessel function. A computer program has been developed in MATLAB 7.11 for the whole approach.

Keywords: Laplace Transform, Modified Bessel function, reaction diffusion equation, diffusion coefficient, excess buffer, calcium influx

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
1488 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.

Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1487 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics

Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini

Abstract:

The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.

Keywords: City logistics, simulation, system dynamics, business model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
1486 ψ-exponential Stability for Non-linear Impulsive Differential Equations

Authors: Bhanu Gupta, Sanjay K. Srivastava

Abstract:

In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.

Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3935
1485 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li

Abstract:

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.

Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1484 An Iterative Method for Quaternionic Linear Equations

Authors: Bin Yu, Minghui Wang, Juntao Zhang

Abstract:

By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.

Keywords: Quaternionic linear equations, Real representation, Iterative algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768