Search results for: differential algebraic equations
1665 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation
Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta
Abstract:
In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.
Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241664 Blow up in Polynomial Differential Equations
Authors: Rudolf Csikja, Janos Toth
Abstract:
Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.
Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831663 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations
Authors: Abdu Masanawa Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511662 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
Authors: E. Aruchunan, J. Sulaiman
Abstract:
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161661 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations
Authors: N. Ebrahimi, J. Rashidinia
Abstract:
In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.
Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991660 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21271659 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations
Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman
Abstract:
This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751658 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36711657 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia
Authors: N. A. Samat, D. F. Percy
Abstract:
The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease.
Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26871656 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society
Authors: Weihua Ruan, Kuan-Chou Chen
Abstract:
This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.Keywords: Differential games, Hamilton-Jacobi-Bellman equations, infinite horizon, political-economy models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10561655 Perturbation Based Modelling of Differential Amplifier Circuit
Authors: Rahul Bansal, Sudipta Majumdar
Abstract:
This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.Keywords: Differential amplifier, perturbation method, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10201654 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571653 Ψ-Eventual Stability of Differential System with Impulses
Authors: Bhanu Gupta
Abstract:
In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.
Keywords: impulsive differential equations, Lyapunov function, eventual stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40521652 Positive Solutions of Second-order Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for the boundary value problem of second-order singular differential equations in Banach space, which improved and generalize the result of related paper.
Keywords: Banach space, cone, fixed point index, singular equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12431651 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations
Authors: Khairil Iskandar Othman, Zarina Bibi Ibrahim, Mohamed Suleiman
Abstract:
A parallel block method based on Backward Differentiation Formulas (BDF) is developed for the parallel solution of stiff Ordinary Differential Equations (ODEs). Most common methods for solving stiff systems of ODEs are based on implicit formulae and solved using Newton iteration which requires repeated solution of systems of linear equations with coefficient matrix, I - hβJ . Here, J is the Jacobian matrix of the problem. In this paper, the matrix operations is paralleled in order to reduce the cost of the iterations. Numerical results are given to compare the speedup and efficiency of parallel algorithm and that of sequential algorithm.Keywords: Backward Differentiation Formula, block, ordinarydifferential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131650 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541649 Lagrangian Method for Solving Unsteady Gas Equation
Authors: Amir Taghavi, kourosh Parand, Hosein Fani
Abstract:
In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.
Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241648 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.Keywords: p-Laplacian, cone, fixed point theorem, positive solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921647 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921646 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method
Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei
Abstract:
As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14211645 Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales
Authors: Changjin Xu, Qianhong Zhang
Abstract:
In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.
Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001644 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations
Authors: Gholamreza Hojjati, Kourosh Parand
Abstract:
In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.
Keywords: Lane-Emden type equations, nonlinear ODE, stiff problems, multistep methods, astrophysics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31831643 Solving SPDEs by a Least Squares Method
Authors: Hassan Manouzi
Abstract:
We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.
Keywords: Least squares, Wick product, SPDEs, finite element, Wiener chaos expansion, gradient method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031642 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides
Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz
Abstract:
This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.
Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13031641 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction
Authors: T. G. Emam
Abstract:
The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.
Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751640 A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations
Authors: Sachin Bhalekar
Abstract:
In this paper we propose a necessary condition for the existence of chaos in delay differential equations of fractional order. To explain the proposed theory, we discuss fractional order Liu system and financial system involving delay.
Keywords: Caputo derivative, delay, stability, chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26661639 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations
Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.
Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16401638 Ordinary Differential Equations with Inverted Functions
Authors: Thomas Kampke
Abstract:
Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.
Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491637 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5581636 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Belkacem Meziane
Abstract:
The original 3D Lorenz-Haken equations -which describe laser dynamics- are converted into 2-second-order differential equations out of which the so far missing mathematics is extracted. Leaning on high-order trigonometry, important outcomes are pulled out: A fundamental result attributes chaos to forbidden periodic solutions, inside some precisely delimited region of the control parameter space that governs self-pulsing.
Keywords: chaos, Lorenz-Haken equations, laser dynamics, nonlinearities
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611