Search results for: decomposition level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3631

Search results for: decomposition level

3571 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.

Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
3570 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
3569 Modeling and Identification of Hammerstein System by using Triangular Basis Functions

Authors: K. Elleuch, A. Chaari

Abstract:

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.

Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
3568 An Algorithm for Computing the Analytic Singular Value Decomposition

Authors: Drahoslava Janovska, Vladimir Janovsky, Kunio Tanabe

Abstract:

A proof of convergence of a new continuation algorithm for computing the Analytic SVD for a large sparse parameter– dependent matrix is given. The algorithm itself was developed and numerically tested in [5].

Keywords: Analytic Singular Value Decomposition, large sparse parameter–dependent matrices, continuation algorithm of a predictorcorrector type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
3567 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid

Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim

Abstract:

A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

Keywords: Strip-decomposition, parallelization, fast directpoisson solver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
3566 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
3565 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
3564 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines

Authors: Hany Osman, M. F. Baki

Abstract:

We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.

Keywords: Transfer line balancing, Benders' decomposition, Linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
3563 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

Authors: Wenqin Wang, Shouming Zhong

Abstract:

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
3562 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment

Authors: Sudipta Majumdar, Amarendra Kumar Mishra

Abstract:

This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.

Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
3561 Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level

Authors: Shengman Zhao, Yang Yu, Shenghui Cui

Abstract:

Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.

Keywords: Decomposition analysis, energy intensity, Fujian Province, industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
3560 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
3559 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In this article a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes- in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: Activated carbon, adsorption, copper, ozone decomposition, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
3558 Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition

Authors: A. K. Bhandari, A. Kumar, P. K. Padhy

Abstract:

In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.

Keywords: Singular Value Decomposition (SVD), discretecosine transforms (DCT), image equalization and satellite imagecontrast enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
3557 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices

Authors: Mahdi Nouri

Abstract:

In this paper we introduce an efficient solution method for the Eigen-decomposition of bisymmetric and per symmetric matrices of symmetric structures. Here we decompose adjacency and Laplacian matrices of symmetric structures to submatrices with low dimension for fast and easy calculation of eigenvalues and eigenvectors. Examples are included to show the efficiency of the method.

Keywords: Graphs theory, Eigensolution, adjacency and Laplacian matrix, Canonical forms, bisymmetric, per symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
3556 Sub-Image Detection Using Fast Neural Processors and Image Decomposition

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.

Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
3555 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation

Authors: Soroosh Rezazadeh, Mehran Yazdi

Abstract:

In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.

Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3554 Solving Fully Fuzzy Linear Systems by use of a Certain Decomposition of the Coefficient Matrix

Authors: S. H. Nasseri, M. Sohrabi, E. Ardil

Abstract:

In this paper, we give a certain decomposition of the coefficient matrix of the fully fuzzy linear system (FFLS) to obtain a simple algorithm for solving these systems. The new algorithm can solve FFLS in a smaller computing process. We will illustrate our method by solving some examples.

Keywords: Fully fuzzy linear system, Fuzzy number, LUdecomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
3553 Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding

Authors: Behnaz Shahrokh, Garnik N. Sargsyan, Arkadi B. Harutyunyan

Abstract:

Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when taking into account the hydrogen bond formation between a hydrogen atom of alkyl residue and the extreme atom of carbon of the vinyl group. The dissociation of TS up to the products is studied by energy minimization procedure using the mathematical program Gaussian. The obtained calculation data for VEE testify that the decomposition of this ether may be conditioned by hydrogen bond formation for two possible versions: when α- or β- hydrogen atoms of the ethyl group are bound to carbon atom of the vinyl group. Applying the same calculation methods to other ethers (VPE and VBE) it is shown that only in the case of hydrogen bonding between α-hydrogen atom of the alkyl residue and the extreme atom of carbon of the vinyl group (αH---C) results in decay of theses ethers.

Keywords: Gaussian, MM2, ethers, TS, decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
3552 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition

Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami

Abstract:

As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.

Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
3551 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.

Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7770
3550 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition

Authors: Chuan Li, Ming Liang

Abstract:

Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.

Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
3549 Feature Extraction of Dorsal Hand Vein Pattern Using a Fast Modified PCA Algorithm Based On Cholesky Decomposition and Lanczos Technique

Authors: Maleika Heenaye- Mamode Khan , Naushad Mamode Khan, Raja K.Subramanian

Abstract:

Dorsal hand vein pattern is an emerging biometric which is attracting the attention of researchers, of late. Research is being carried out on existing techniques in the hope of improving them or finding more efficient ones. In this work, Principle Component Analysis (PCA) , which is a successful method, originally applied on face biometric is being modified using Cholesky decomposition and Lanczos algorithm to extract the dorsal hand vein features. This modified technique decreases the number of computation and hence decreases the processing time. The eigenveins were successfully computed and projected onto the vein space. The system was tested on a database of 200 images and using a threshold value of 0.9 to obtain the False Acceptance Rate (FAR) and False Rejection Rate (FRR). This modified algorithm is desirable when developing biometric security system since it significantly decreases the matching time.

Keywords: Dorsal hand vein pattern, PCA, Cholesky decomposition, Lanczos algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
3548 Random Projections for Dimensionality Reduction in ICA

Authors: Sabrina Gaito, Andrea Greppi, Giuliano Grossi

Abstract:

In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ¤ü, defined as the ratio between the size k of the reduced space and the original one d, which guarantees a narrow confidence interval of such estimator with high confidence level. The derived dimensionality reduction rate depends on a system control parameter β easily computed a priori on the basis of the observations only. Extensive simulations have been done on different sets of real world signals. They show that actually the dimensionality reduction is very high, it preserves the quality of the decomposition and impressively speeds up FastICA. On the other hand, a set of signals, on which the estimated reduction rate is greater than 1, exhibits bad decomposition results if reduced, thus validating the reliability of the parameter β. We are confident that our method will lead to a better approach to real time applications.

Keywords: Independent Component Analysis, FastICA algorithm, Higher-order statistics, Johnson-Lindenstrauss lemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3547 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

Authors: J. Geiser, R. Röhle

Abstract:

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
3546 Progressive Loading Effect of Co over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to COx free hydrogen and carbon nanomaterials. The catalytic runs were carried out from 550-800oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, XRD, SEM, TEM and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity at 800oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs and branched CNFs depending on the catalyst composition and reaction temperature were obtained.

Keywords: Carbon nanotubes, Cobalt, Hydrogen Production, Methane decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
3545 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility

Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata

Abstract:

Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.

Keywords: Chemical Processing Facility, medium- and long-term management plan of JAEA Facilities, STRAD project, treatment of radioactive waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
3544 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
3543 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
3542 Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach

Authors: Deepak Chhabra, Gian Bhushan, Pankaj Chandna

Abstract:

The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD. 

Keywords: Closed loop Average dB gain, Genetic Algorithm (GA), LQR Controller, MCSVD, Optimal positions, Singular Value Decomposition (SVD) Approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073