Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30073
Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding

Authors: Behnaz Shahrokh, Garnik N. Sargsyan, Arkadi B. Harutyunyan


Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when taking into account the hydrogen bond formation between a hydrogen atom of alkyl residue and the extreme atom of carbon of the vinyl group. The dissociation of TS up to the products is studied by energy minimization procedure using the mathematical program Gaussian. The obtained calculation data for VEE testify that the decomposition of this ether may be conditioned by hydrogen bond formation for two possible versions: when α- or β- hydrogen atoms of the ethyl group are bound to carbon atom of the vinyl group. Applying the same calculation methods to other ethers (VPE and VBE) it is shown that only in the case of hydrogen bonding between α-hydrogen atom of the alkyl residue and the extreme atom of carbon of the vinyl group (αH---C) results in decay of theses ethers.

Keywords: Gaussian, MM2, ethers, TS, decomposition

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880


[1] Comprehensive Chemical Kinetics, vol.3. "The formation and decay of excited species". Edited by C. H. Bamford and C. F. H. Tipper, Elsevier Publishing Company, Amsterdam-London-New York, 1969, p. 320.
[2] Namikoshi T., Hashimito T., Kodaira T. // J. Polym. Sci. Part A: Polym.Chem. 2004, v.42(14), p.3649.
[3] Peskin Ury, Reisler and Miller H. William // J. Chem. Phys., 1994, v.101(11), p.9672.
[4] Shimofuji K., Saito K., Imamura A. // J. Phys. Chem., 1991, v.95(1), p.155.
[5] Marcus R. A. // J. Chem. Phys., 1952, v.20, p.359.
[6] Busfield W.K, Jenkins I.D, and Monteiro M.J. // J. Polym. Sci. Part A: Polym.Chem., 1997, v.35, p.263.
[7] Leitner M. David, Wolynes G. Peter // Chem. Phys. 2006, v.329, p.163.
[8] Pritchard O.H. // Canad. J. Chem., 1977, v.55, p.284.
[9] Pokidova T.S, Shestakov A.F. // Russian J. Phys.Chem. A, Focus on Chemistry, 2009, v.83(11), p.1860.
[10] Huisken F., Krajnovich D., Zhang Z., Shen Y.R., Lee Y.T. // J. Chem. Phys., 1983, v.78(6), p.3806.
[11] Brener D. M. // Chem. Phys. Letters, 1978, v.57(3), p.357.
[12] Bamkole T.O. // J. Applaed Science, 2006, v.6(3), p.631.
[13] Slater N.B. Theory of Unimolecular Reactions, Cornell University, New York, 1959.
[14] Landau L. D.Lifshic E. M. Quantum mechanics. " NAUKA", M., 1963, p.702.
[15] Fano U., Fano L., Physics of atoms and molecules. M. "Nauka",1980, p. 656.
[16] Blades A. T. and Marry C. W. J Am. Chem. Soc. 74, 103, 9, 1952.
[17] Stein L. and Murphy J., J. Am. Chem. Soc., 74, 1041, 1952.