Search results for: Super Resolution with Non-Linear Signal Processing
3840 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images
Authors: Maninder Pal
Abstract:
Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.
Keywords: Zooming, interpolation, medical images, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15753839 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Authors: Dejan Stantic, Jun Jo
Abstract:
ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.
Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29093838 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15623837 A Real-Time Signal Processing Technique for MIDI Generation
Authors: Farshad Arvin, Shyamala Doraisamy
Abstract:
This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.Keywords: Signal processing, MIDI, Microcontroller, EIA-232.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21273836 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals
Authors: Farhad Asadi, Hossein Sadati
Abstract:
In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5643835 PI Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50273834 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework
Authors: T. P. Athira, Gibin Chacko George
Abstract:
This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.
Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21633833 Control Signal from EOG Analysis and Its Application
Authors: Myoung Ro Kim, Gilwon Yoon
Abstract:
A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.
Keywords: DDR game, EOG, eye movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47953832 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction
Authors: Jun Wang, Tingcun Wei
Abstract:
The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.
Keywords: DPWM, PLL megafunction, FPGA, time resolution, digitally-controlled DC-DC switching converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12443831 A New Nonlinear PID Controller and its Parameter Design
Authors: Yongping Ren, Zongli Li, Fan Zhang
Abstract:
A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.Keywords: Nonlinear PID controller, stability, gain equivalence, dissipative, T-Passivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31763830 Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm
Authors: Su Su Yi Mon, Fang Jiancheng
Abstract:
Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.
Keywords: Synthetic Aperture Radar (SAR), Range Doppler Algorithm (RDA), Image Resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33473829 A New Secure Communication Model Based on Synchronization of Coupled Multidelay Feedback Systems
Authors: Thang Manh Hoang
Abstract:
Recent research result has shown that two multidelay feedback systems can synchronize each other under different schemes, i.e. lag, projective-lag, anticipating, or projectiveanticipating synchronization. There, the driving signal is significantly complex due that it is constituted by multiple nonlinear transformations of delayed state variable. In this paper, a secure communication model is proposed based on synchronization of coupled multidelay feedback systems, in which the plain signal is mixed with a complex signal at the transmitter side and it is precisely retrieved at the receiver side. The effectiveness of the proposed model is demonstrated and verified in the specific example, where the message signal is masked directly by the complex signal and security is examined under the breaking method of power spectrum analysis.Keywords: chaos synchronization, time-delayed system, chaosbasedsecure communications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19943828 Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents
Authors: Amer Dawoud, Rashid Mia, Arati Biswakarma, Jesy Motchaalangaram, Wujan Miao, Karl Wallace
Abstract:
The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWAs) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.
Keywords: Drone-based, remote detection chemical warfare agents, miniaturized, potentiostat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5263827 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17313826 Review of Surface Electromyogram Signals: Its Analysis and Applications
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.
Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35163825 Application of Double Side Approach Method on Super Elliptical Winkler Plate
Authors: Hsiang-Wen Tang, Cheng-Ying Lo
Abstract:
In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use.
Keywords: Super elliptical Winkler Plate, double side approach method, error bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193824 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: H. K. Hwang, Zekeriya Aliyazicioglu, Solomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr
Abstract:
Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.
Keywords: Multiple-input multiple-output (MIMO) radar, phased array antenna, target detection, radar signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28063823 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography
Authors: Y. Kumru, K. Enhos, H. Köymen
Abstract:
In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.
Keywords: Coded excitation, complementary Golay codes, DiPhAS, medical ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9053822 Pre-Deflection Routing with Control Packet Signal Scheme in Optical Burst Switch Networks
Authors: Jaipal Bisht, Aditya Goel
Abstract:
Optical Burst Switching (OBS) is a promising technology for the future generation Internet. Control architecture and Contention resolution are the main issues faced by the Optical Burst Switching networks. In this paper we are only taking care of the Contention problem and to overcome this issue we propose Pre-Deflection Routing with Control Packet Signal Scheme for Contention Resolution in Optical Burst Switch Networks. In this paper Pre-deflection routing approach has been proposed in which routing is carried out in two ways, Shortest Path First (SPF) and Least Hop First (LHF) Routing to forward the clusters and canoes respectively. Hereafter Burst Offset Time Control Algorithm has been proposed where a forward control packet (FCP) collects the congestion price and contention price along its paths. Thereafter a reverse-direction control packet (RCP) sent by destination node which delivers the information of FCP to the source node, and source node uses this information to revise its offset time and burst length.
Keywords: Contention Resolution, FCP, OBS, Offset Time, PST, RCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19003821 EMD-Based Signal Noise Reduction
Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi
Abstract:
This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.
Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40023820 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17163819 Hysteresis Modulation Based Sliding Mode Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The Object of this paper is to design and analyze a Hysteresis modulation based sliding mode control (HMSMC) for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a HMSMC capable of providing the good steady state and dynamic performance compared to conventional controllers. Dynamic equations describing the positive output elementary super lift luo converter are derived by using state space average method. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The HMSMC for positive output elementary super lift Luo converter is tested for line changes, load changes and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Hysteresis modulation basedsliding mode control (HMSMC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22503818 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17303817 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy
Authors: Idris Elfeituri
Abstract:
In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.
Keywords: Exergy, super-heater, fouling, steam power plant, off-design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11263816 Piecewise Interpolation Filter for Effective Processing of Large Signal Sets
Authors: Anatoli Torokhti, Stanley Miklavcic
Abstract:
Suppose KY and KX are large sets of observed and reference signals, respectively, each containing N signals. Is it possible to construct a filter F : KY → KX that requires a priori information only on few signals, p N, from KX but performs better than the known filters based on a priori information on every reference signal from KX? It is shown that the positive answer is achievable under quite unrestrictive assumptions. The device behind the proposed method is based on a special extension of the piecewise linear interpolation technique to the case of random signal sets. The proposed technique provides a single filter to process any signal from the arbitrarily large signal set. The filter is determined in terms of pseudo-inverse matrices so that it always exists.Keywords: Wiener filter, filtering of stochastic signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14123815 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12733814 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15943813 Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB
Authors: Durgesh Kumar Ojha, Monica Subashini
Abstract:
The proposed method is to study and analyze Electrocardiograph (ECG) waveform to detect abnormalities present with reference to P, Q, R and S peaks. The first phase includes the acquisition of real time ECG data. In the next phase, generation of signals followed by pre-processing. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool, MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work with ECG signals for processing and analysis in real time applications. The simulation would help in improving the accuracy and the hardware could be built conveniently.
Keywords: ECG Waveform, Peak Detection, Arrhythmia, Matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120083812 Adaptive Fuzzy Control of a Nonlinear Tank Process
Authors: A. R. Tavakolpour-Saleh, H. Jokar
Abstract:
Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.
Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20193811 PAPR Reduction Method for OFDM Signalby Using Dummy Sub-carriers
Authors: Pisit Boonsrimuang, Arjin Numsomran, Tawil Paungma, Hideo Kobayashi
Abstract:
One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal. The larger PAPR signal would course the fatal degradation of bit error rate performance (BER) due to the inter-modulation noise in the nonlinear channel. This paper proposes an improved DSI (Dummy Sequence Insertion) method, which can achieve the better PAPR and BER performances. The feature of proposed method is to optimize the phase of each dummy sub-carrier so as to reduce the PAPR performance by changing all predetermined phase coefficients in the time domain signal, which is calculated for data sub-carriers and dummy sub-carriers separately. To achieve the better PAPR performance, this paper also proposes to employ the time-frequency domain swapping algorithm for fine adjustment of phase coefficient of the dummy subcarriers, which can achieve the less complexity of processing and achieves the better PAPR and BER performances than those for the conventional DSI method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional methods in the non-linear channel.Keywords: OFDM, PAPR, dummy sub-carriers, non-linear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545