
Piecewise Interpolation Filter
for Effective Processing of Large Signal Sets

Anatoli Torokhti and Stanley Miklavcic

Abstract—Suppose KY and KX are large sets of observed and
reference signals, respectively, each containing N signals. Is it
possible to construct a filter F : KY → KX that requires a priori
information only on few signals, p � N , from KX but performs
better than the known filters based on a priori information on every
reference signal from KX ? It is shown that the positive answer is
achievable under quite unrestrictive assumptions. The device behind
the proposed method is based on a special extension of the piecewise
linear interpolation technique to the case of random signal sets. The
proposed technique provides a single filter to process any signal from
the arbitrarily large signal set. The filter is determined in terms of
pseudo-inverse matrices so that it always exists.

Keywords—Wiener filter, filtering of stochastic signals.

I. INTRODUCTION

A. Motivations

APURPOSE of the proposed new filtering methodology
is to provide an effective way to process large signal

sets. The device behind the proposed method is quite simple
and is based on a special extension of the piecewise linear
interpolation technique to the case of random signal sets.
At the same time, such a device is not straightforward and
requires the careful substantiation presented in Sections II-C,
III-D, IV-B and IV-D below.

B. Motivations

The problem under consideration is motivated by the fol-
lowing observations.

1) FILTERING OF LARGE SETS OF SIGNALS; LESS INITIAL

INFORMATION FOR BETTER FILTERING: Suppose we need to
transform a set of signals K

Y
to another set of signals K

X
.

The signals are represented by finite random vectors1. A major
difficulty and inconvenience common to many known filtering
methodologies (see, for example, [2]–[10], [12], [14], [23],
[24], [26]) is that they require a priori information on each
reference signal to be estimated2. In particular, the filters in
[23], [24], [26] are based on the use of either the reference
signal x ∈ K

X
itself, as in [23], [24], or its estimate, as
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1We say a random vector x is finite if its realization has a finite number

of scalar components.
2To the best of our knowledge, the exception is the methodology in [11],

[13] where the filtering techniques exploit information on reference signals
in the form of the vector obtained from averaging over reference signal sets.

in [26]. The Wiener filtering approach (see, for example, [2]–
[14], [24], [26]) assumes that a covariance matrix formed from
a reference signal, x ∈ KX , and an observed signal, y ∈ KY ,
is known or can be estimated. The latter can be done, for
instance, from samples of x and y. In particular, this means
that the reference signal x can be measured.

In the case of processing large signal sets, such restrictions
become much more inconvenient.

The major motivating question for this work is as follows.
Let F : KY

→ K
X

denote a filter that estimates a large set of
reference signals, K

X
, from a large set of observed signals,

K
Y

. Each set contains N signals. Is it possible to construct a
filter F that requires a priori information only on few signals,
p � N , from KX

but performs better than the known filters
based on a prior information on every reference signal from
K

X
? We denote such a filter by F (p−1).

It is shown in Sections II-C and IV-D that the positive
answer is achievable under quite unrestrictive assumptions.
The required features of filter F (p−1) are satisfied by its
special structure described in Sections II-C, III-A and III-D.
The related conditions are also considered in those Sections.

2) FILTERING BASED ON IDEA OF PIECEWISE FUNCTION

INTERPOLATION: The specific structure of the proposed filter
follows from the extension of piecewise function interpolation
[15]. This is because the technique of piecewise function in-
terpolation [15] has significant advantages over the methods of
linear and polynomial approximation used in known filtering
techniques (such as, for example, those in [6], [10]).

The structure of the proposed filter is presented in Sections
II-C, III-A and IV-B below.

3) EXPLOITING PSEUDO-INVERSE MATRICES IN THE FIL-
TER MODEL: Most of the known filtering techniques, for
example, those ones in [2]–[4], [7]–[9], [12], [24], [26], are
based on exploiting inverse matrices in their mathematical
models. In the cases of grossly corrupted signals or erroneous
measurements those inverse matrices may not exist and, thus,
those filters cannot be applied.

The filter proposed here avoids this drawback since its
model is based on exploiting pseudo-inverse matrices. As a
result, the proposed filter always exist. That is, it processes any
kind of noisy signals. An extension of the filtering techniques
to the case of implementation of the pseudo-inverse matrices
is done on the basis of theory presented in [6].

4) COMPUTATIONAL WORK: Let m and n be the number
of components of x ∈ KX and of y ∈ KY , respectively, where
KX and KY each contains N signals. The known filtering
techniques (e.g. see [2]–[9], [12], [24], [26]), applied to x
and y, require the computation of a product of an m × n
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matrix and an n × n matrix, as well as the computation of
an n × n inverse or pseudo-inverse matrix for each pair of
signals x ∈ KX and y ∈ KY . This requires O(2mn2) and
O(26n3) flops, respectively [27]. Thus, for the processing of
all signals in K

X
and K

Y
, the filters in [2]–[9], [12], [24],

[26] require O(2mn2N) + O(26n3N) operations.
Alternatively, K

X
and K

Y
can be represented by vectors,

χ and γ, each with mN and nN components, respectively.
In such a case, the techniques in [2]–[9], [12], [24], [26] can
be applied to χ and γ as opposed to each signals in KX and
KY . The computational requirement is then O(2mn2N2) and
O(26n3N3) operations, respectively [27].

In both cases, but especially when N is large, the computa-
tional work associated with the approaches [2]–[9], [12], [24],
[26] becomes unreasonable hard.

For the filter F (p−1) to be introduced below, the associated
computational work is substantially less. This is because
F (p−1) requires the computation of only p pseudo-inverse
matrices associated with p selected signals in KX , where p
is much less than the number of signals in KX . Therefore, for
processing of the signal sets, KX and KY , F (p−1) requires
only O(2mn2p) + O(26n3p) flops where p � N .

C. Relevant works

Some particular filtering techniques relevant to the method
proposed below are as follows.

1) GENERIC OPTIMAL LINEAR (GOL) FILTER [6]: The
generic optimal linear (GOL) filter in [6] is a generalization
of the Wiener filter to the case when covariance matrix is
not invertible and observable signal is arbitrarily noisy (i.e.
when, in particular, noise is not necessarily additive and
Gaussian). The GOL filter has been developed for processing
an individual stochastic signal. Some ideas from [6] are used
in the proof of Theorem 1 below.

2) SIMPLICIAL CANONICAL PIECEWISE LINEAR FILTER

[24]: A complex Wiener adaptive filter was developed in
[24] from the two-dimensional complex-valued simplicial
canonical piecewise linear filter [25]. The filter in [24] was
developed for the processing of an individual stochastic signal
and can be exploited when the reference signal is known and
a ‘covariance-like’ matrix is invertible. The latter precludes an
application to the signal types when the matrices used in [24]
are not invertible for the signals. Similarly, the filters studied in
[9], [12] were developed for the processing of a single signal
when the covariance matrices are invertible.

For the filter proposed here, these restrictions are removed.
3) ADAPTIVE PIECEWISE LINEAR FILTER [23]: A piece-

wise linear filter in [23] was proposed for a fixed image de-
noising (given by a matrix), corrupted by an additive Gaussian
noise. That is, the method involved a non stochastic reference
signal and required its knowledge. No theoretical justification
for the filter was given in [23].

4) AVERAGING POLYNOMIAL FILTER [11], [13]: The av-
eraging polynomial filter proposed in [11], [13] was developed
for the purpose of processing infinite signal sets. The filter
was based on an argument involving the‘averaging’ over sets
of signals under consideration. This device allows one to

determine a single filter for the processing of infinite signal
sets. At the same time, it leads to an increase in the associated
error when signals differ considerably from each other.

5) OTHER RELEVANT FILTERS: The technique developed
in [14] is an extension of the GOL filter to the constraint
problem with respect to the filter rank. It concerns data
compression.

The methods in [7], [8], [16], [17] have been developed for
deterministic signals. Motivated by the results achieved in [16],
[17], adaptive filters were elaborated in [18]. A theoretical
basis for the device proposed in [16], [17] is provided in [19].

We note that the idea of piecewise linear filtering has
been used in the literature in several very different conceptual
frameworks, despite exploiting some very similar terms (as
in [16]–[25]). At the same time, a common feature of those
techniques is that they were developed for the processing of
a single signal, not of large signal sets as in this paper. In
particular, piecewise linear filters in [20] have been obtained
by arranging linear filters and thresholds in a tree structure.
Piecewise linear filters discussed in [21] were developed using
so-called threshold decomposition, which is a segmentation
operator exploited to split a signal into a set of multilevel
components. Filter design methods for piecewise linear sys-
tems proposed in [22] were based on a piecewise Lyapunov
function.

D. Difficulties associated with the known filtering techniques

Basic difficulties associated with applying the known fil-
tering techniques to the case under consideration (i.e. to
processing of large signal sets, KX and KY ) are that:

(i) they require an information on each reference signal (in
the form of a sample, for example),

(ii) matrices used in the known filters can be not invertible
and then the filter does not exist, and

(ii) the associated computation work may require a very
long time. MATLAB can be out of memory for computing the
GOL filter [6] when each of sets KX and KY is represented
by a long vector (this option has been discussed in Section
I-B4 above).

E. Differences from the known filtering techniques

The differences from the known filtering techniques dis-
cussed above are as follows.

(i) We consider a single filter that processes arbitrarily
large input-output sets of stochastic signal-vectors. The known
filters [2]–[10], [12], [14], [16]–[26] have been developed for
the processing of an individual signal-vector only. In the case
of their application to arbitrarily large signal sets, they imply
difficulties described in Sections I-B and I-D above.

(ii) As a result, our piecewise linear filter model (Section
III), the statement of the problem (Section III-C below) and
consequently, the device of its solution (Section IV below) are
different from those considered in [16]–[25]. In this regard, see
also Section I-C5.

(iii) The above naturally leads to a new structure of the filter
(presented in Sections III-D and IV-B below) which is very
different from the known ones.
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F. Contribution

In general, for the processing of large data sets, the proposed
filter allows us to achieve better results in comparison with the
known techniques in [2]–[26]. In particular, it allows us to

(i) achieve a desired accuracy in signal estimation3,
(ii) exploit a priori information only on few reference signals,

p, from the set KX that contains N � p signals or even
infinite number of signals,

(iii) find a single filter to process any signal from the
arbitrarily large signal set,

(vi) determine the filter in terms of pseudo-inverse matrices
so that the filter always exists, and
(v) decrease the computational load compared to the related

known techniques.

II. SOME PRELIMINARIES

A. Notation

The signal sets we consider are, in fact, special representa-
tions of time series.

Let (Ω, Σ, μ) be a probability space4, and KX and KY be
arbitrarily large sets of signals such that

KX = {x(t, ·) ∈ L2(Ω, Rm) | t ∈ T} and

KY
= {y(t, ·) ∈ L2(Ω, Rn) | t ∈ T}

where T := [a, b] ⊆ R. We interpret x(t, ·) as a reference
signal and y(t, ·) as an observable signal, an input to the filter
F studied below5. The variable t ∈ T ⊆ R represents time.6

Then, for example, the random signal x(t, ·) can be interpreted
as an arbitrary stationary time series.

Let {tk}p
1 ⊂ T be a sequence of fixed time-points such that

a = t1 < . . . < tp = b. (1)

Because of the partition (1), the sets K
Y

and K
X

are divided
in ‘smaller’ subsets KX,1, . . . , KX,p−1 and KY,1, . . . , KY,p−1,
respectively, so that, for each j = 1, . . . , p,

KX,j = {x(t, ·) | tj ≤ t ≤ tj+1} and (2)

KY,j = {y(t, ·) | tj ≤ t ≤ tj+1}. (3)

Therefore, KY and KX can now be represented as KX =⋃p−1
j=1 KX,j and K

Y
=

⋃p−1
j=1 KY,j .

3This means that any desired accuracy is achieved theoretically, as is shown
in Section IV-D below. In practice, of course, the accuracy is increased to a
prescribed reasonable level.

4As usually, Ω = {ω} is the set of outcomes, Σ a σ–field of measurable
subsets in Ω and μ : Σ → [0, 1] an associated probability measure on Σ. In
particular, μ(Ω) = 1.

5In an intuitive way y can be regarded as a noise-corrupted version of x.
For example, y can be interpreted as y = x + n where n is white noise.
In this paper, we do not restrict ourselves to this simplest version of y and
assume that the dependence of y on x and n is arbitrary.

6More generally, T can be considered as a set of parameter vectors α =
(α(1), . . . , α(q))T ∈ Cq ⊆ R

q , where Cq is a q-dimensional cube, i.e.,
y = y(α, ·) and x = x(α, ·). One coordinate, say α(1) of α, could be
interpreted as time.

B. Brief description of the problem

Given two arbitrarily large sets of random signals, K
Y

and
KX , find a single filter F : KY → KX that estimates the
signal x ∈ KX with a controlled, associated error. Note that
in our formulation the set K

Y
can be finite or infinite.

C. Brief description of the method

The solution of the above problem is based on the represen-
tation of the proposed filter in the form of a sum with p − 1
terms F1, . . . ,Fp−1 where each term, F j , is interpreted as a
particular sub-filter (see (4) and (5) below). Such a filter is
denoted by F (p−1) : K

Y
→ K

X
.

The sub-filter Fj transforms signals that belong to ‘piece’
KY,j of set KY to signals in ‘piece’ KX,j of KX , i.e. Fj :
KY,j → KX,j . Each sub-filter Fj depends on two parameters,
αj and Bj .

The prime idea is to determine Fj (i.e. αj and Bj)
separately, for each j = 1, . . . , p − 1. The required αj and
Bj follow from the solutions of the equation (12) and an
associated minimization problem (12) (see Sections III-D and
IV-B below). This procedure adjusts Fj so that the error
associated with the estimation of x(t, ·) ∈ KX,j is minimal.

A motivation for such a structure of the filter F (p−1) is
as follows. The method of determining αj and Bj provides
an estimate F j [y(t, ·)] that interpolates x(t, ·) ∈ KX,j at
t = tj and t = tj+1. In other words, the filter is flexible
to variations in the sets of observed and reference signals KY

and KX , respectively. Due to this way of determining Fj , it
is natural to expect that the processing of a ‘smaller’ signal
set, KY,j , may lead to a smaller associated error than that for
the processing of the whole set KY by a filter which is not
specifically adjusted to each particular piece KY,j .

As a result, F (p−1)[y(t, ·)] represents a special piecewise
interpolation procedure and, thus, should be attributed with the
associated advantages such as, for example, the high accuracy
of estimation.

In Section IV-D, this observation is confirmed. In Section
IV-E, it is also shown that the proposed technique allows us
to avoid the difficulties discussed in Section I-D above.

III. DESCRIPTION OF THE PROBLEM.

A. Piecewise linear filter model

Let F (p−1) : K
Y

→ K
X

be a filter such that, for each
t ∈ T ,

F (p−1)[y(t, ·)] =
p−1∑
j=1

δjFj [y(t, ·)], (4)

where
Fj [y(t, ·)] = αj + Bj [y(t, ·)] (5)

and

δj =
{

1, if tj ≤ t ≤ tj+1,
0, otherwise.

Here, Fj is a sub-filter defined for tj ≤ t ≤ tj+1. In (5), αj =
[α(1)

j , . . . , α
(m)
j ]T ∈ R

m and Bj : L2(Ω, Rn) → L2(Ω, Rm)
is a linear operator given by a matrix Bj ∈ R

m×n, so that

[Bj(y)](t, ω) = Bj [y(t, ω)].
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Thus, F j is defined by a matrix Fj ∈ R
m×n such that

Fj [y(t, ω)] = αj + Bj [y(t, ω)]. (6)

Filter F (p−1) defined by (4)–(6) is called the piecewise
filter7.

B. Assumptions

In the known approaches related to filtering of stochastic
signals (e.g. see [2]–[14], [24], [26]), it is assumed that
covariance matrices formed from the reference signal and
observed signal are known or can be estimated.

The assumption used here is similar. The covariance ma-
trices that are assumed to be known or can be estimated,
are formed from selected signal pairs {x(tj , ·),y(tj , ·)} with
j = 1, . . . , p and p to be a small number8, p � N , where N
is the number of signals in KX or KY .

C. The problem

In (4)–(6), parameters of the filter F (p−1), i.e. vector αj and
matrix Bj , for j = 1, . . . , p−1, are unknown. Therefore, under
the assumptions described in Section III-B, the problem is to
determine αj and Bj , for j = 1, . . . , p−1. The related problem
is to estimate an error associated with the filter F (p−1).

Solutions to the both problems are given in Sections IV-B
and IV-D, respectively. In particular, in the following Section
III-D, interpolation conditions (8) and (12) are introduced that
lead to a determination of αj and Bj .

D. Interpolation conditions

Let us denote

‖x(tj , ·)‖2
Ω =

∫
Ω

‖x(tj , ω)‖2
2dμ(ω) (7)

where ‖x(tj , ω)‖2 is the Euclidean norm of x(tj , ω) ∈ R
m.

For t = t1, let x̂(t1, ·) be an estimate of x(t1, ·) determined
by known methods [2]–[14], [24], [26]. This is the initial
condition of the proposed technique.

For j = 1, . . . , p−1, each sub-filter Fj in (5)–(6) is defined
so that αj and Bj satisfy the conditions as follows.

Sub-filter F1: For j = 1, α1 and B1 solve

x̂(t1, ·) = α1 + B1[y(t1, ·)] and (8)

min
B1

‖[x(t2, ·) − α1] − B1[y(t2, ·)]‖2
Ω , (9)

respectively. Then an estimate of x(t, ·), x̂(t, ·), for t ∈
[t1, t2], is determined as

x̂(t, ·) = F1[y(t, ·)] = x̂(t1, ·) + B1[y(t, ·) − y(t1, ·)] (10)

where α1 and B1 satisfy (8). In particular, α1 = x̂(t1, ·) −
B1[y(t1, ·)] and

x̂(t2, ·) = F1[y(t2, ·)].
7Hereinafter, we will use a non-curly symbol to denote an operator and

associated matrix (e.g., the operator Fj : L2(Ω, R
n) → L2(Ω, R

m) and the
associated matrix Fj ∈ R

m×n are denoted by Fj ).
8It is worthwhile to note that it is not assumed that the covariance matrices

are known for each signal pair from KX × KY , {x(t, ·),y(t, ·)} with t ∈
[a, b].

Extending this procedure up to j = k − 1, where k =
3, . . . , p, we set the following. Let x̂(tk−1, ·) be an estimate
of x(tk−1, ·) defined by the preceding steps as

x̂(tk−1, ·) = Fk−2[y(tk−1, ·)]. (11)

Then sub-filter Fk−1 is defined as follows.
Sub-filter Fk−1: For j = k − 1, αk−1 and Bk−1 solve

x̂(tk−1, ·) = αk−1 + Bk−1[y(tk−1, ·)] and (12)

min
Bk−1

‖[x(tk, ·) − αk−1] − Bk−1[y(tk, ·)]‖2
Ω , (13)

respectively. Then an estimate of x(t, ·), x̂(t, ·), for t ∈
[tk−1, tk], is determined as

x̂(t, ·) = Fk−1[y(t, ·)]
= x̂(tk−1, ·) + B1[y(t, ·) − y(tk−1, ·)]. (14)

The conditions (8) and (12) are motivated by the device of
piecewise function interpolation and associated advantages
[15].

Filter F (p−1) of the form (4)–(5) with αj and Bj satisfying
(8) and (12) is called the piecewise linear interpolation filter.
The pair of signals {x(tk, ·),y(tk, ·)} associated with time tk
defined by (1) is called the interpolation pair.

IV. MAIN RESULTS

A. General device

In accordance withe the scheme presented in Sections III-A
and III-D above, an estimate of the reference signal x(t, ·),
for any t ∈ T = [a, b], by the piecewise linear interpolation
filter F (p−1), is given by

x̂(t, ·) = F (p−1)[y(t, ·)] =
p−1∑
j=1

δjFj [y(t, ·)], (15)

where, for each j = 1, . . . , p−1, the sub-filter Fj is given by
(5), and is defined from the interpolation conditions (8) and
(12).

Below, we show how to determine Fj to satisfy the condi-
tions (8) and (12).

B. Determination of piecewise linear interpolation filter

Let us denote

z(tj , tj+1, ·) = x(tj+1, ·) − x̂(tj , ·), (16)

w(tj , tj+1, ·) = y(tj+1, ·) − y(tj , ·). (17)

We need to represent z(tj , tj+1, ·) and w(tj , tj+1, ·) in terms
of their components as follows:

z(tj , tj+1, ·) = [z(1)(tj , tj+1, ·), . . . , z(m)(tj , tj+1, ·)]T

and

w(tj , tj+1, ·) = [w(1)(tj , tj+1, ·), . . . ,w(n)(tj , tj+1, ·)]T ,

where z(j)(tj , tj+1, ·) ∈ L2(Ω, R) and w(i)(tj , tj+1, ·) ∈
L2(Ω, R) are random variables, for all j = 1, . . . , m.

Then we can introduce the covariance matrix

Ezjwj =
{〈

z(i)(tj , tj+1, ·),w(k)(tj , tj+1, ·)
〉}m,n

i,k=1
, (18)
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where 〈
z(i)(tj , tj+1, ·),w(k)(tj , tj+1, ·)

〉
=

∫
Ω

z(i)(tj , tj+1, ω)w(k)(tj , tj+1, ω) dμ(ω).

Below, M† is the Moor-Penrose generalized inverse of a
matrix M .

Now, we are in a position to establish the main results.
Theorem 1: Let

KX = {x(t, ·) ∈ L2(Ω, Rm) | t ∈ T = [a, b]}
and KY = {y(t, ·) ∈ L2(Ω, Rn) | t ∈ T = [a, b]}

be sets of reference signals and observed signals, respectively.
Let tj ∈ [a, b], for j = 1, . . . , p, be such that

a = t1 < . . . < tp = b.

For t = t1, let x̂(t1, ·) be a known estimate of x(t1, ·)9. Then,
for any t ∈ [a, b], the proposed piecewise linear interpolation
filter F (p−1) : L2(Ω, Rn) → L2(Ω, Rm) transforming any
signal y(t, ·) ∈ L2(Ω, Rm) to an estimate of x(t, ·), x̂(t, ·), is
given by

x̂(t, ·) = F (p−1)[y(t, ·)] =
p−1∑
j=1

δjFj [y(t, ·)] (19)

where

Fj [y(t, ·)] = x̂(tj , ·) + Bj [y(t, ·) − y(tj , ·)], (20)

x̂(tj , ·) = Fj−1[y(tj , ·)] (for j = 2, . . . , p − 1), (21)

Bj = Ezjwj E
†
wjwj

+ MBj [In − Ewjwj E
†
wjwj

], (22)

and where In is the n×n identity matrix and MBj
is an m×n

arbitrary matrix.
Proof: The proof of Theorem 1 is given in the Appendix.

�

It is worthwhile to observe that, due to an arbitrary matrix
MBj in (22), the filter F (p−1) is not unique. In particular,
MBj can be chosen as the zero matrix O similarly to the
generic optimal linear [6] (which is also not unique by the
same reason).

C. Numerical realization of filter F (p−1) and associated al-
gorithm

1) Numerical realization : In practice, the set T = [a, b]
(see Section II-A) is represented by a finite set {τk}N

k=1, i.e.
[a, b] = [τ1, τ2, . . . , τN ] where a ≤ τ1 < τ2 < . . . < τN ≤ b.

For k = 1, . . . , N , the estimate of x(τk, ·), x̂(τk, ·), and
observed signal y(τk, ·) are represented by m × q and n × q
matrices

X̂(k) = [x̂(τk, ω1), . . . , x̂(τk, ωq)]
and Y (k) = [y(τk, ω1), . . . ,y(τk, ωq)].

9As it has been mentioned in Section III-D, x̂(t1, ·) can be determined by
the known methods.

The sequence of fixed time-points {tk}p
1 ⊂ [a, b] introduced

in (1) is such that

τ1 = t1 < . . . < tp = τN , (23)

where

t1 = τn0 , t2 = τn0+n1 , . . . , tp = τn0+n1...+np−1 ,

and where n0 = 1 and n1, . . . , np−1 are positive integers such
that N = n0 + n1 + . . . + np−1.

For j = 1, . . . , p, signal y(tj, ·) associated with tj in (23)
is represented by

Yj = [y(tj , ω1), . . . ,y(tj , ωN )].

2) Algorithm : As it has been mentioned in Section III-D,
it is supposed that, for t = t1, an estimate of X1, X̂1, is
known and can be determined by the known methods. This is
the initial condition of the proposed technique.

On the basis of the results obtained in Sections III-D and
IV-B, the performance algorithm of the proposed filter consists
of the following steps. For j = 1 . . . , p, we write Nj = n0 +
n1 + . . . + nj−1.

Initial parameters: Y (1), . . . , Y (N), {tj}p
j=1 (see (23)),

{Ezjwj}p
j=1, {Ewjwj}p

j=1 (see (16) and (18)), X̂1, n0 = 1
and MBj

= O, for j = 1, . . . , p − 1.
(Possible ways to get estimates of Ezjwj

and Ewjwj
are

discussed below in Section IV-E.)
Final parameters: X̂(2), X̂(3),. . ., X̂(N).
Algorithm:
• for j = 1 to p do

begin
Bj = Ezjwj E

†
wjwj

;

• for k = Nj−1 + 1 to Nj do
begin

X̂(k) = X̂j + Bj(Y (k) − Yj);

end
end

D. Error analysis

It is natural to expect that the error associated with the piece-
wise interpolating filter F (p−1) decreases when max

j=1,...,p−1
Δtj

decreases. Below, in Theorem 3, we justify that this observa-
tion is true. To this end, first, in the following Theorem 2, we
establish an estimate of the error associated with the filter F .

Let us introduce the norm by

‖x(t, ·)‖2
T,Ω =

1
b − a

∫
T

‖x(t, ·)‖2
Ωdt. (24)

We also denote ‖x(t, ω)‖2
T,Ω = ‖x(t, ·)‖2

T,Ω.
Let us suppose that x(·, ω) and y(·, ω) are Lipschitz con-

tinuous signals, i.e. that there exist real non-negative constants
λj and γj , with j = 1, . . . , p, such that, for t ∈ [tj , tj+1],

‖x(t, ω) − x(tj , ω)‖2
T, Ω ≤ λjΔtj (25)

and ‖y(t, ω) − y(tj+1, ω)‖2
T, Ω ≤ γjΔtj (26)
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where Δtj = |tj+1 − tj |.
Theorem 2: Under the conditions (25) the error asso-

ciated with the piecewise interpolation filter, ‖x(t, ω) −
F (p−1)[y(t, ω)]‖2

T, Ω, is estimated as follows:

‖x(t, ω) − F (p−1)[y(t, ω)]‖2
T, Ω (27)

≤ max
j=1,...,p−1

[
(λj + γj‖Bj‖2)Δtj + ‖E1/2

zjzj
‖2 (28)

−‖Ezjwj (E
1/2
wjwj

)†‖2
]
. (29)

Proof: The proof of Theorem 2 is given in the Appendix. �

Further, to show that the error of the reference signal
estimate tends to the zero, we need to assume that, for
t ∈ [t1, t2], the known estimate x̂(t1, ω) differs from x(t, ω)
for the value of the order Δt1, i.e. that, for some constant
c1 ≥ 0,

‖x(t, ω) − x̂(t1, ω)‖2
Ω ≤ c1Δt1, for t ∈ [t1, t2]. (30)

Theorem 3: Let the conditions (25) and (30) be true. Then
the error associated with the piecewise interpolating filter F ,
‖x(t, ω) − F (p−1)[y(t, ω)]‖2

T, Ω, decreases in the following
sense:

‖x(t, ω) − F (p−1)[y(t, ω)]‖2
T, Ω → 0 as (31)

max
j=1,...,p−1

Δtj → 0 and p → ∞. (32)

Proof: The proof of Theorem 3 is given in the Appendix. �

Remark 1: We would like to emphasize that the statement
of Theorem 3 is fulfilled only under assumptions (25) and
(30). At the same time, the assumptions (25) and (30) are
not restrictive from a practical point of view. The condition
(25) is true for Lipschitz continuous signals x and y, i.e. for
very wide class of signals. The condition (30) is achieved by
a choosing an appropriate known method (e.g. see [2]–[14],
[24], [26]) to find the estimate x̂(t1, ω) used in the proposed
filter F (p−1) (see (8) and Theorem 1).

E. Some remarks related to the assumptions of the method

As it has been mentioned in Section III-B, for j = 1, . . . , p,
matrices Ezjwj

and Ewjwj
in (22) are assumed to be known

or can be estimated. Here, p is a chosen number of selected
interpolation signal pairs (see Section III-D). We note that
normally p is much smaller than the number of input-output
signals x(t, ·) and y(t, ·). Therefore, to estimate any signal
x(t, ·) from an arbitrarily large set K

X
, only a small number,

p, of matrices Ezjwj and Ewjwj should be estimated (or be
known). This issue has also been discussed in Sections I-B1
and I-B4.

By the proposed method, x(t, ·) is estimated for t ∈
[tj , tj+1]. While Ewjwj in (22) can be directly estimated from
observed signals y(tj+1, ·) and y(tj , ·), an estimate of matrix
Ezjwj depends on the reference signal x(tj+1, ·) (see (16) and
(18)) which is unknown (because the estimate is considered
for t ∈ [tj , tj+1]).

Some possible approaches to an estimation of matrix Ezjwj

could be as follows.
1. In the general case, when x(t, ·) and y(t, ·) are arbitrary

signals as discussed in Section II-A above, matrix Ezjwj can

be estimated as proposed, for example, in [28], from samples
of zj and wj .

2. In the case of incomplete observations, the method
proposed in [29], [30] can be used.

3. Let Eẑjwj
be a matrix obtained from matrix Ezjwj

where
the term x(tj+1, ·) is replaced by x̂(t, ·) with t ∈ [tj−1, tj ].
Since x̂(t, ·) with t ∈ [tj−1, tj ] is known, matrix Eẑjwj can
be considered as an estimate of Ezjwj .

4. In the important case of an additive noise, Ezjwj can be
represented in the explicit form. Indeed, if

y(t, ·) = x(t, ·) + ξ(t, ·)
where ξ(t, ·) ∈ L2(Ω, Rm) is a random noise, then
z(tj , tj+1, ·) = y(tj+1, ·) − ξ(tj+1, ·) − x̂(tj , ·) and matrix
Ezjwj can be represented as follows:

Ezjwj = E(yj+1−ξj+1)(yj+1−yj) − Ex̂j(yj+1−yj) (33)

We note that the RHS of (33) depends only on observed
signals y(tj , ·), y(tj+1, ·), estimated signal x̂(tj , ·), and noise
ξ(tj+1, ·), not on the reference signal x(tj+1, ·). In par-
ticular, in (33), the term Eξj+1(yj+1−yj) can be estimated
as ±(E[ξ2

j+1])
1/2(E[(yj+1 − yj)2])1/2 where E[ξ2

j+1] =∫
Ω

[ξ(tj+1, ω)]2 dμ(ω). It is motivated by the Holder’s inequal-

ity for integrals. The second term in (33), Ex̂j(yj+1−yj), can
be estimated from the samples of x̂(tj+1, ·) and y(tj+1, ·) −
y(tj , ·).

We also note that the first term in the RHS of (33),
E(yj+1−ξj+1)(yj+1−yj), is similar to the related covariance
matrix in the Wiener filtering approach [6].

5. Other known ways to estimate Eξj+1(yj+1−yj) can be
found in [6], Section 5.3.

In general, an estimation of covariance matrices is a special
research topic which is not a subject of this paper. The relevant
references can be found, for example, in [6], [30].

V. CONCLUSION

The theory for a new approach to filtering arbitrarily large
sets of stochastic signals KY and KX is provided. Distinctive
features of the approach are as follows.

(i) The proposed filter F (p−1) : KY → KX is nonlinear
and is presented in the form of a sum with p− 1 terms where
each term, Fj : KY,j → KX,j , is interpreted as a particular
sub-filter. Here, KY,j and KX,j are ‘small’ pieces of KY and
KX , respectively.

(ii) The prime idea is to exploit a priori information only on
few reference signals, p, from the set KX that contains N � p
signals (or even an infinite number of signals) and determine
Fj separately, for each pieces KY,j and KX,j , so that the
associated error is minimal. In other words, the filter F (p−1)

is flexible to changes in the sets of observed and reference
signals KY and KX , respectively.

(iii) Due to the specific way of determining Fj , the filter
F (p−1) provides a smaller associated error than that for the
processing of the whole set KY by a filter which is not
specifically adjusted to each particular piece KY,j . Moreover,
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the error associated with our filter decreases when the number
of its terms, F1, . . . ,Fp−1, increases.

(iv) While the proposed filter F (p−1) processes arbitrarily
large (and even infinite) signal sets, the filter is nevertheless
fixed for all signals in the sets.

(v) The filter F (p−1) is determined in terms of pseudo-
inverse matrices so that the filter always exists.

(vi) The computational load associated with the filter
F (p−1) is less than that associated with other known filters
applied to the processing of large signal sets.

APPENDIX A

Proof of Theorem 1: It follows from (8) and (12) that αj ,
for j = 1, . . . , p − 1, is given by

αj = x̂(tj , ω) − Bj [y(tj , ω)]. (34)

Further, for αj given by (34),

‖[x(tj+1, ·) − αj ] − Bj [y(tj+1, ·)]‖2
Ω

= ‖z(tj , tj+1, ·) − Bj [w(tj , tj+1, ·))]‖2
Ω

= tr{Ezjzj
− Ezjwj

BT
j − BjEwjzj

+ BjEwjwj
BT

j }
= ‖E1/2

zjzj
‖2 − ‖Ezjwj

(E1/2
wjwj

)†‖2

+‖(Bj − Ezjwj E
†
wjwj

)E1/2
wjwj

‖2

= ‖E1/2
zjzj

‖2 − ‖Ezjwj (E
1/2
wjwj

)†‖2 (35)

+‖Ezjwj (E
1/2
wjwj

)† − BjE
1/2
wjwj

‖2,

where ‖ · ‖ is the Frobenius norm. The latter is true because

E†
wjwj

E1/2
wjwj

= (E1/2
wjwj

)†

and
Ezjwj E

†
wjwj

Ewjwj = Ezjwj (36)

by Lemma 24 in [6]. Thus, the second expression in (12) is
reduced to the problem

min
Bj

‖Ezjwj (E
1/2
wjwj

)† − BjE
1/2
wjwj

‖2. (37)

It is known (see, for example, [6], p. 304) that the solution
of problem (37) is given by (22). The equation (20) follows
from (6) and (34).

Theorem 1 is proven. �

Proof of Theorem 2: For t ∈ [tj , tj+1] and Fj defined by
(20)–(22),

x(t, ω) − F [y(t, ω)]
= x(t, ω) − Fj [y(t, ω)]
= x(t, ω) − x̂(tj , ω) + Bjy(tj , ω) − Bjy(t, ω)
= [x(t, ω) − x(tj+1, ω)] + z(tj , tj+1, ω) (38)

−Bjw(tj , tj+1, ω) + Bj [y(tj+1, ω) − y(t, ω)].

Then (38) and (38) imply

‖x(t, ω) − F [y(t, ω)]‖2
T,Ω

≤ ‖x(t, ω) − x(tj+1, ω)‖2
T,Ω

+ ‖z(tj , tj+1, ω) − Bjw(tj , tj+1, ω)‖2
Ω (39)

+ ‖Bj [y(tj+1, ω) − y(t, ω)]‖2
T,Ω

where
‖z(tj , tj+1, ω) − Bjw(tj , tj+1, ω)‖2

Ω

= ‖z(tj , tj+1, ω) − Bjw(tj , tj+1, ω)‖2
T,Ω.

It follows from (35) and (35) that for Bj given by (22),

‖z(tj , tj+1, ω) − Bjw(tj , tj+1, ω)‖2
Ω

= ‖E1/2
zjzj

‖2 − ‖Ezjwj (E
1/2
wjwj

)†‖2. (40)

Then (19)–(22), (25) and (38)–(40) imply that for all t ∈
[a, b] and ω ∈ Ω, (27) is true. �

Proof of Theorem 3: The relation (24) implies that

‖x(t, ω) − F [y(t, ω)]‖2
T,Ω

=
1

b − a

p−1∑
j=1

∫ tj+1

tj

‖x(t, ω) − Fj [y(t, ω)]‖2
Ωdt, (41)

where

‖x(t, ω) − Fj [y(t, ω)]‖2
Ω

= ‖x(t, ω) − x̂(tj , ω) + Bj [y(tj , ω) − Bjy(t, ω)]‖2
Ω

≤ ‖x(t, ω) − x(tj , ω)‖2
Ω + ‖x(tj , ω) − x̂(tj , ω)‖2

Ω

+‖Bj [y(tj , ω) − Bjy(t, ω)]‖2
Ω.

Then∫ tj+1

tj

‖x(t, ω) − Fj [y(t, ω)]‖2
Ωdt

≤
∫ tj+1

tj

‖x(t, ω) − x(tj , ω)‖2
Ωdt

+
∫ tj+1

tj

‖x(tj , ω) − x̂(tj , ω)‖2
Ωdt

+‖Bj‖
∫ tj+1

tj

‖y(tj , ω) − y(t, ω)‖2
Ωdt (42)

≤ λj(Δtj)2 + ‖x(tj , ω) − x̂(tj , ω)‖2
ΩΔtj + ‖Bj‖γj(Δtj)2

Let us consider an estimate of ‖x(tj , ω) − x̂(tj , ω)‖2
Ω, for

j = 1, . . . , p−1. To this end, let us denote Δt = max
j=1,...,p−1

Δtj .

For j = 1, i.e. for t ∈ [t1, t2],

‖x(t, ω) − F1y(t, ω)‖2
Ω

≤ ‖x(t, ω) − x(t1, ω)‖2
Ω + ‖x(t1, ω) − x̂(t1, ω)‖2

Ω

+‖B1‖‖y(t1, ω) − y(t, ω)‖2
Ω

≤ λ1Δt1 + c1Δt1 + ‖B1‖γ1Δt1

≤ β1Δt,

where β1 = λ1 + c1 +‖B1‖γ1. In particular, the latter implies

‖x(t2, ω) − x̂(t2, ω)‖2
Ω = ‖x(t2, ω) − F1y(t2, ω)‖2

Ω ≤ β1Δt

For j = 2, i.e. for t ∈ [t2, t3],

‖x(t, ω) − F2y(t, ω)‖2
Ω

≤ ‖x(t, ω) − x(t2, ω)‖2
Ω + ‖x(t2, ω) − x̂(t2, ω)‖2

Ω

+‖B2‖‖y(t2, ω) − y(t, ω)‖2
Ω

≤ λ2Δt2 + β1Δt + ‖B2‖γ2Δt2

≤ β2Δt,
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where β2 = λ2 + β1 + ‖B2‖γ2. In particular, then it follows
that

‖x(t3, ω) − x̂(t3, ω)‖2
Ω = ‖x(t3, ω) − F2y(t3, ω)‖2

Ω ≤ β2Δt.

On the basis of the above, let us assume that, for j = k − 1
with k = 2, . . . , p − 1, i.e. for t ∈ [tk−1, tk],

‖x(tk, ω) − x̂(tk, ω)‖2
Ω = ‖x(tk, ω) − Fk−1y(tk, ω)‖2

Ω

≤ βk−1Δt

where βk−1 is defined by analogy with β2.
Then, for j = k with k = 2, . . . , p−1, i.e. for t ∈ [tk, tk+1],

‖x(t, ω) − Fky(t, ω)‖2
Ω

≤ ‖x(t, ω) − x(tk, ω)‖2
Ω + ‖x(tk, ω) − x̂(tk, ω)‖2

Ω

+‖Bk‖‖y(tk, ω) − y(t, ω)‖2
Ω

≤ λkΔtk + βk−1Δt + ‖Bk‖γ2Δtk

≤ βkΔt,

where βk = λk +βk−1 +‖Bk‖γk. Thus, the following is true:

‖x(tk+1, ω) − x̂(tk+1, ω)‖2
Ω

= ‖x(tk+1, ω) − Fky(tk+1, ω)‖2
Ω ≤ βkΔt. (43)

Therefore, (42), (42) and (43) imply∫ tj+1

tj

‖x(t, ω) − Fj [y(t, ω)]‖2
Ωdt

≤ λj(Δtj)2 + βj−1(Δtj)2 + ‖Bj‖γj(Δtj)2

≤ ηj(Δt)2 (44)

where ηj = λj +βj−1 +‖Bj‖, and then it follows from (41)–
(42) and (44) that for all t ∈ [a, b],

‖x(t, ω) − F [y(t, ω)]‖2
T,Ω ≤ 1

b − a

p−1∑
j=1

ηj(Δt)2

=
1

b − a
Δt

p−1∑
j=1

ηjΔt. (45)

Let us now choose c ∈ R and d ∈ R so that Δt =
d − c

p
and partition interval [c, d] ⊂ R by points τ1, . . . , τp so that
c = τ1 and τj = τ1 + jΔt with j = 1, . . . , p. There exists an
integrable (bounded) function ϕ : [c, d] → R such that, for
ξj ∈ (τj , τj+1), ϕ(ξj) = ηj . Then

lim
Δt→∞

p−1∑
j=1

ηjΔt = lim
Δt→∞

p−1∑
j=1

ϕ(ξj)Δt =
∫ d

c

ϕ(τ)dτ < +∞. (46)

Thus, 1
b−a Δt

∑p−1
j=1 ηjΔt → 0 as Δt → 0.

As a result, (45)–(46) imply (31). �
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