Search results for: Polynomial Regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 979

Search results for: Polynomial Regression

919 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
918 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
917 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model

Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang

Abstract:

This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.

Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
916 Robust Regression and its Application in Financial Data Analysis

Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani

Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords: Financial data analysis, Influential data, Outliers, Robust regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
915 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang

Abstract:

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very large scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.

Keywords: Digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
914 Regression Test Selection Technique for Multi-Programming Language

Authors: Walid S. Abd El-hamid, Sherif S. El-Etriby, Mohiy M. Hadhoud

Abstract:

Regression testing is a maintenance activity applied to modified software to provide confidence that the changed parts are correct and that the unchanged parts have not been adversely affected by the modifications. Regression test selection techniques reduce the cost of regression testing, by selecting a subset of an existing test suite to use in retesting modified programs. This paper presents the first general regression-test-selection technique, which based on code and allows selecting test cases for any programs written in any programming language. Then it handles incomplete program. We also describe RTSDiff, a regression-test-selection system that implements the proposed technique. The results of the empirical studied that performed in four programming languages java, C#, Cµ and Visual basic show that the efficiency and effective in reducing the size of test suit.

Keywords: Regression testing, testing, test selection, softwareevolution, software maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
913 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

Authors: Shilpi Lavania, Deepak Nagaria

Abstract:

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
912 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

Authors: Serge B. Provost, Min Jiang

Abstract:

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
911 Image Search by Features of Sorted Gray level Histogram Polynomial Curve

Authors: Awais Adnan, Muhammad Ali, Amir Hanif Dar

Abstract:

Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.

Keywords: Sorted Histogram, Polynomial Curves, feature pointsof images, Grayscale, visual properties of image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
910 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao

Abstract:

In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: Dependence analysis, EFSM model, greedy algorithm, regression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
909 Voltage Stability Proximity Index Determined by LES Algorithm

Authors: Benalia Nadia, Bensiali Nadia, Mekki Mounira

Abstract:

In this paper, we propose an easily computable proximity index for predicting voltage collapse of a load bus using only measured values of the bus voltage and power; Using these measurements a polynomial of fourth order is obtained by using LES estimation algorithms. The sum of the absolute values of the polynomial coefficient gives an idea of the critical bus. We demonstrate the applicability of our proposed method on 6 bus test system. The results obtained verify its applicability, as well as its accuracy and the simplicity. From this indicator, it is allowed to predict the voltage instability or the proximity of a collapse. Results obtained by the PV curve are compared with corresponding values by QV curves and are observed to be in close agreement.

Keywords: least square method, Voltage Collapse, Voltage Stability, PV curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
908 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow estimating the main technological spreads and determining the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: Induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
907 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: Regression model, social mood, stock market prediction, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
906 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
905 Local Error Control in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
904 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects

Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi

Abstract:

In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.

Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
903 An Approach to Polynomial Curve Comparison in Geometric Object Database

Authors: Chanon Aphirukmatakun, Natasha Dejdumrong

Abstract:

In image processing and visualization, comparing two bitmapped images needs to be compared from their pixels by matching pixel-by-pixel. Consequently, it takes a lot of computational time while the comparison of two vector-based images is significantly faster. Sometimes these raster graphics images can be approximately converted into the vector-based images by various techniques. After conversion, the problem of comparing two raster graphics images can be reduced to the problem of comparing vector graphics images. Hence, the problem of comparing pixel-by-pixel can be reduced to the problem of polynomial comparisons. In computer aided geometric design (CAGD), the vector graphics images are the composition of curves and surfaces. Curves are defined by a sequence of control points and their polynomials. In this paper, the control points will be considerably used to compare curves. The same curves after relocated or rotated are treated to be equivalent while two curves after different scaled are considered to be similar curves. This paper proposed an algorithm for comparing the polynomial curves by using the control points for equivalence and similarity. In addition, the geometric object-oriented database used to keep the curve information has also been defined in XML format for further used in curve comparisons.

Keywords: Bezier curve, Said-Ball curve, Wang-Ball curve, DP curve, CAGD, comparison, geometric object database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
902 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
901 On The Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: Robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
900 Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning

Authors: Sandeep Singh Gill, Rajeevan Chandel, Ashwani Chandel

Abstract:

This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.

Keywords: Partitioning, genetic algorithm, ant colony optimization, non-polynomial hard, netlist, mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
899 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
898 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Authors: Arkady Bolotin

Abstract:

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
897 Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

Authors: Xian Ming Gu, Ting Zhu Huang, Hou Biao Li

Abstract:

In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these preconditioners are presented and how to construct preconditioners effectively for any nonsingular block pentadiagonal H-matrices is also described. In addition, the availability of these preconditioners is illustrated with some numerical experiments arising from two dimensional biharmonic equation.

Keywords: Parallel algorithm, Pentadiagonal matrix, Polynomial approximate inverse, Preconditioners, Stair matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
896 A Combined Conventional and Differential Evolution Method for Model Order Reduction

Authors: J. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, C. Ardil

Abstract:

In this paper a mixed method by combining an evolutionary and a conventional technique is proposed for reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM). In the conventional technique, the mixed advantages of Mihailov stability criterion and continued Fraction Expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. Then, retaining the numerator polynomial, the denominator polynomial is recalculated by an evolutionary technique. In the evolutionary method, the recently proposed Differential Evolution (DE) optimization technique is employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. The proposed method is illustrated through a numerical example and compared with ROM where both numerator and denominator polynomials are obtained by conventional method to show its superiority.

Keywords: Reduced Order Modeling, Stability, Mihailov Stability Criterion, Continued Fraction Expansions, Differential Evolution, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
895 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression

Authors: Baoguang Tian, Nan Chen

Abstract:

A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.

Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
894 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
893 Robust Control Synthesis for an Unmanned Underwater Vehicle

Authors: A. Budiyono

Abstract:

The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.

Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
892 On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields

Authors: Schehrazad Selmane

Abstract:

According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose of this work. The constructed lists of the first coincidences of 52 (resp. 50, 40, 48, 22, 6) nonisomorphic number fields with same discriminant of degree 10 of signature (6,2) (resp. (4,3), (8,1), (2,4), (0,5), (10,0)) containing a quintic field. For each field in the lists, we indicate its discriminant, the discriminant of its subfield, a relative polynomial generating the field over its quintic field and its relative discriminant, the corresponding polynomial over Q and its Galois closure are presented with concluding remarks.

Keywords: Discriminant, nonisomorphic fields, quintic fields, relative quadratic extensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
891 Internet Purchases in European Union Countries: Multiple Linear Regression Approach

Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić

Abstract:

This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analyzed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analyzed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.

Keywords: European Union, Internet purchases, multiple linear regression model, outlier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
890 Cryptographic Attack on Lucas Based Cryptosystems Using Chinese Remainder Theorem

Authors: Tze Jin Wong, Lee Feng Koo, Pang Hung Yiu

Abstract:

Lenstra’s attack uses Chinese remainder theorem as a tool and requires a faulty signature to be successful. This paper reports on the security responses of fourth and sixth order Lucas based (LUC4,6) cryptosystem under the Lenstra’s attack as compared to the other two Lucas based cryptosystems such as LUC and LUC3 cryptosystems. All the Lucas based cryptosystems were exposed mathematically to the Lenstra’s attack using Chinese Remainder Theorem and Dickson polynomial. Result shows that the possibility for successful Lenstra’s attack is less against LUC4,6 cryptosystem than LUC3 and LUC cryptosystems. Current study concludes that LUC4,6 cryptosystem is more secure than LUC and LUC3 cryptosystems in sustaining against Lenstra’s attack.

Keywords: Lucas sequence, Dickson Polynomial, faulty signature, corresponding signature, congruence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732