Search results for: Partial Differential Equations
1943 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.
Keywords: Parkinson's disease, Step method, delay differential equation, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7331942 An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
In this paper, self-starting block hybrid method of order (5,5,5,5)T is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on stiff ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811941 Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis
Authors: Diego Garijo
Abstract:
A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.
Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421940 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591939 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations
Authors: Sara Barati, Karim Ivaz
Abstract:
In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.
Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771938 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation
Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi
Abstract:
In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.Keywords: Dehydrogenation, Pt-Sn/Al2O3 Catalyst, Modeling, Nelder-Mead, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27451937 A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach
Authors: Osama A. Marzouk
Abstract:
We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.Keywords: reduced-order model, wake oscillator, nonlinear, ODEsystem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661936 Development Partitioning Intervalwise Block Method for Solving Ordinary Differential Equations
Authors: K.H.Khairul Anuar, K.I.Othman, F.Ishak, Z.B.Ibrahim, Z.Majid
Abstract:
Solving Ordinary Differential Equations (ODEs) by using Partitioning Block Intervalwise (PBI) technique is our aim in this paper. The PBI technique is based on Block Adams Method and Backward Differentiation Formula (BDF). Block Adams Method only use the simple iteration for solving while BDF requires Newtonlike iteration involving Jacobian matrix of ODEs which consumes a considerable amount of computational effort. Therefore, PBI is developed in order to reduce the cost of iteration within acceptable maximum errorKeywords: Adam Block Method, BDF, Ordinary Differential Equations, Partitioning Block Intervalwise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701935 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium
Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.Keywords: Keller-box, MHD boundary layer flow, permeability stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801934 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.
Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981933 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.
Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901932 Action Functional of the Electomagnetic Field: Effect of Gravitation
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
The scalar wave equation for a potential in a curved space time, i.e., the Laplace-Beltrami equation has been studied in this work. An action principle is used to derive a finite element algorithm for determining the modes of propagation inside a waveguide of arbitrary shape. Generalizing this idea, the Maxwell theory in a curved space time determines a set of linear partial differential equations for the four electromagnetic potentials given by the metric of space-time. Similar to the Einstein-s formulation of the field equations of gravitation, these equations are also derived from an action principle. In this paper, the expressions for the action functional of the electromagnetic field have been derived in the presence of gravitational field.
Keywords: General theory of relativity, electromagnetism, metric tensor, Maxwells equations, test functions, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601931 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14821930 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021929 Radiation Effect on Unsteady MHD Flow over a Stretching Surface
Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26751928 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction
Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.
Keywords: Exponentially shrinking sheet, magnetic field, mixed convection, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24761927 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations
Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol
Abstract:
This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.
Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9751926 Solving Inhomogeneous Wave Equation Cauchy Problems using Homotopy Perturbation Method
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
In this paper, He-s homotopy perturbation method (HPM) is applied to spatial one and three spatial dimensional inhomogeneous wave equation Cauchy problems for obtaining exact solutions. HPM is used for analytic handling of these equations. The results reveal that the HPM is a very effective, convenient and quite accurate to such types of partial differential equations (PDEs).
Keywords: Homotopy perturbation method, Exact solution, Cauchy problem, inhomogeneous wave equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071925 Rear Separation in a Rotating Fluid at Moderate Taylor Numbers
Authors: S. Damodaran, T. V. S.Sekhar
Abstract:
The motion of a sphere moving along the axis of a rotating viscous fluid is studied at high Reynolds numbers and moderate values of Taylor number. The Higher Order Compact Scheme is used to solve the governing Navier-Stokes equations. The equations are written in the form of Stream function, Vorticity function and angular velocity which are highly non-linear, coupled and elliptic partial differential equations. The flow is governed by two parameters Reynolds number (Re) and Taylor number (T). For very low values of Re and T, the results agree with the available experimental and theoretical results in the literature. The results are obtained at higher values of Re and moderate values of T and compared with the experimental results. The results are fourth order accurate.Keywords: Navier_Stokes equations, Taylor number, Reynolds number, Higher order compact scheme, Rotating Fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13201924 Applying Element Free Galerkin Method on Beam and Plate
Authors: Mahdad M’hamed, Belaidi Idir
Abstract:
This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate holeKeywords: Numerical computation, element-free Galerkin, moving least squares, meshless methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24361923 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation
Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta
Abstract:
In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.
Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17221922 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131921 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity
Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.
Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22671920 Blow up in Polynomial Differential Equations
Authors: Rudolf Csikja, Janos Toth
Abstract:
Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.
Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21821919 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations
Authors: Abdu Masanawa Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501918 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
Authors: E. Aruchunan, J. Sulaiman
Abstract:
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151917 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's
Authors: J. Sulaiman, M. Othman, M. K. Hasan
Abstract:
Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.
Keywords: MEG iteration, second-order finite difference, weighted parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031916 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941915 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations
Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman
Abstract:
This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751914 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670