Search results for: Fuzzy sets theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2896

Search results for: Fuzzy sets theory

2836 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2835 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

Authors: Jinming Ma, Tianbing Xia, Janusz R. Getta

Abstract:

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Keywords: Mobile internet, advertisement, anti-fraud, fuzzy set theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
2834 Object Speed Estimation by using Fuzzy Set

Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi

Abstract:

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Keywords: Blur Analysis, Fuzzy sets, Speed estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2833 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions

Authors: A. Siam, R. Maamri, Z. Sahnoun

Abstract:

The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines, The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.

Keywords: Adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
2832 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis

Authors: C. Ardil

Abstract:

Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.

Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387
2831 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
2830 A Study on Linking Upward Substitution and Fuzzy Demands in the Newsboy-Type Problem

Authors: Pankaj Dutta, Debjani Chakraborty

Abstract:

This paper investigates the effect of product substitution in the single-period 'newsboy-type' problem in a fuzzy environment. It is supposed that the single-period problem operates under uncertainty in customer demand, which is described by imprecise terms and modelled by fuzzy sets. To perform this analysis, we consider the fuzzy model for two-item with upward substitution. This upward substitutability is reasonable when the products can be stored according to certain attribute levels such as quality, brand or package size. We show that the explicit consideration of this substitution opportunity increase the average expected profit. Computational study is performed to observe the benefits of product's substitution.

Keywords: Fuzzy demand, Newsboy, Single-period problem, Substitution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2829 Fuzzy Modeling Tool for Creating a Component Model of Information System

Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes, Jaroslav Prochazka, Pavel Smolka, Juraj Masar, Martin Pesl

Abstract:

This paper focuses on creating a component model of information system under uncertainty. The paper identifies problem in current approach of component modeling and proposes fuzzy tool, which will work with vague customer requirements and propose components of the resulting component model. The proposed tool is verified on specific information system and results are shown in paper. After finding suitable sub-components of the resulting component model, the component model is visualised by tool.

Keywords: Component, component model, fuzzy, fuzzy rules, fuzzy sets, information system, modelling, tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2828 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference

Authors: Ayman A. Aly, Abdallah A. Alshnnaway

Abstract:

The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.

Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
2827 Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse

Authors: Meredith Stevenson, John E. Porter

Abstract:

Since the pioneering work of Zadeh, fuzzy set theory has been applied to a myriad of areas. Song and Chissom introduced the concept of fuzzy time series and applied some methods to the enrollments of the University of Alabama. In recent years, a number of techniques have been proposed for forecasting based on fuzzy set theory methods. These methods have either used enrollment numbers or differences of enrollments as the universe of discourse. We propose using the year to year percentage change as the universe of discourse. In this communication, the approach of Jilani, Burney, and Ardil is modified by using the year to year percentage change as the universe of discourse. We use enrollment figures for the University of Alabama to illustrate our proposed method. The proposed method results in better forecasting accuracy than existing models.

Keywords: Fuzzy forecasting, fuzzy time series, fuzzified enrollments, time-invariant model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
2826 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
2825 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs

Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa

Abstract:

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2824 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Authors: Faisal Alshuwaier, Ali Areshey

Abstract:

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.

Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
2823 On Strong(Weak) Domination in Fuzzy Graphs

Authors: C.Natarajan, S.K.Ayyaswamy

Abstract:

Let G be a fuzzy graph. Then D Ôèå V is said to be a strong (weak) fuzzy dominating set of G if every vertex v ∈ V -D is strongly (weakly) dominated by some vertex u in D. We denote a strong (weak) fuzzy dominating set by sfd-set (wfd-set). The minimum scalar cardinality of a sfd-set (wfd-set) is called the strong (weak) fuzzy domination number of G and it is denoted by γsf (G)γwf (G). In this paper we introduce the concept of strong (weak) domination in fuzzy graphs and obtain some interesting results for this new parameter in fuzzy graphs.

Keywords: Fuzzy graphs, fuzzy domination, strong (weak) fuzzy domination number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
2822 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP

Authors: H. Rafiei, M. Rabbani

Abstract:

A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.

Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
2821 Project Selection by Using Fuzzy AHP and TOPSIS Technique

Authors: S. Mahmoodzadeh, J. Shahrabi, M. Pariazar, M. S. Zaeri

Abstract:

In this article, by using fuzzy AHP and TOPSIS technique we propose a new method for project selection problem. After reviewing four common methods of comparing alternatives investment (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in AHP tree. In this methodology by utilizing improved Analytical Hierarchy Process by Fuzzy set theory, first we try to calculate weight of each criterion. Then by implementing TOPSIS algorithm, assessment of projects has been done. Obtained results have been tested in a numerical example.

Keywords: Fuzzy AHP, Project Selection, TOPSIS Technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6599
2820 Modeling Uncertainty in Multiple Criteria Decision Making Using the Technique for Order Preference by Similarity to Ideal Solution for the Selection of Stealth Combat Aircraft

Authors: C. Ardil

Abstract:

Uncertainty set theory is a generalization of fuzzy set theory and intuitionistic fuzzy set theory. It serves as an effective tool for dealing with inconsistent, imprecise, and vague information. The technique for order preference by similarity to ideal solution (TOPSIS) method is a multiple-attribute method used to identify solutions from a finite set of alternatives. It simultaneously minimizes the distance from an ideal point and maximizes the distance from a nadir point. In this paper, an extension of the TOPSIS method for multiple attribute group decision-making (MAGDM) based on uncertainty sets is presented. In uncertainty decision analysis, decision-makers express information about attribute values and weights using uncertainty numbers to select the best stealth combat aircraft.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
2819 Forecasting Enrollment Model Based on First-Order Fuzzy Time Series

Authors: Melike Şah, Konstantin Y.Degtiarev

Abstract:

This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different number of fuzzy sets is tested as well. As with the most of cited papers, historical enrollment of the University of Alabama is used in this study to illustrate the forecasting process. Subsequently, the performance of the proposed method is compared with existing fuzzy time series time-invariant models based on forecasting accuracy. It reveals a certain performance superiority of the proposed method over methods described in the literature.

Keywords: Forecasting, fuzzy time series, linguistic values, student enrollment, time-invariant model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2818 Anti-Homomorphism in Fuzzy Ideals

Authors: K. Chandrasekhara Rao, V. Swaminathan

Abstract:

The anti-homomorphic image of fuzzy ideals, fuzzy ideals of near-rings and anti ideals are discussed in this note. A necessary and sufficient condition has been established for near-ring anti ideal to be characteristic.

Keywords: Fuzzy Ideals, Anti fuzzy subgroup, Anti fuzzy ideals, Anti homomorphism, Lower α level cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
2817 Some Results on Interval-Valued Fuzzy BG-Algebras

Authors: Arsham Borumand Saeid

Abstract:

In this note the notion of interval-valued fuzzy BG-algebras (briefly, i-v fuzzy BG-algebras), the level and strong level BG-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BG-subalgebras. The images and inverse images of i-v fuzzy BG-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BG-subalgebra becomes i-v fuzzy BG-algebras are studied.

Keywords: BG-algebra, fuzzy BG-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BG-subalgebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
2816 Classification and Resolving Urban Problems by Means of Fuzzy Approach

Authors: F. Habib, A. Shokoohi

Abstract:

Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.

Keywords: Classification, complexity, Fuzzy theory, urban problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2815 Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Authors: Yuli Hu, Shaoquan Sun

Abstract:

The aim of this paper is to introduce the concepts of fuzzy subalgebras, fuzzy ideals and fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords: BCI-algebras, BCI-algebras with operators, fuzzy subalgebras, fuzzy ideals, fuzzy quotient algebras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
2814 θ -Euclidean k-Fuzzy Ideals of Semirings

Authors: D.R Prince Williams

Abstract:

In this paper, we introduce the notion θ-Euclidean k-fuzzy ideal in semirings and to study the properties of the image and pre image of a θ -Euclidean k-fuzzy ideal in a semirings under epimorphism.

Keywords: semiring, fuzzy ideal, k–fuzzy ideal, θ -Euclidean Lfuzzyideal, θ -Euclidean fuzzy k–ideal, θ -Euclidean k-fuzzy ideal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334
2813 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers

Authors: Hassan M. Elragal

Abstract:

This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiers

Keywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
2812 Covering-based Rough sets Based on the Refinement of Covering-element

Authors: Jianguo Tang, Kun She, William Zhu

Abstract:

Covering-based rough sets is an extension of rough sets and it is based on a covering instead of a partition of the universe. Therefore it is more powerful in describing some practical problems than rough sets. However, by extending the rough sets, covering-based rough sets can increase the roughness of each model in recognizing objects. How to obtain better approximations from the models of a covering-based rough sets is an important issue. In this paper, two concepts, determinate elements and indeterminate elements in a universe, are proposed and given precise definitions respectively. This research makes a reasonable refinement of the covering-element from a new viewpoint. And the refinement may generate better approximations of covering-based rough sets models. To prove the theory above, it is applied to eight major coveringbased rough sets models which are adapted from other literature. The result is, in all these models, the lower approximation increases effectively. Correspondingly, in all models, the upper approximation decreases with exceptions of two models in some special situations. Therefore, the roughness of recognizing objects is reduced. This research provides a new approach to the study and application of covering-based rough sets.

Keywords: Determinate element, indeterminate element, refinementof covering-element, refinement of covering, covering-basedrough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
2811 Hutchinson-Barnsley Operator in Fuzzy Metric Spaces

Authors: R. Uthayakumar, D. Easwaramoorthy

Abstract:

The purpose of this paper is to present the fuzzy contraction properties of the Hutchinson-Barnsley operator on the fuzzy hyperspace with respect to the Hausdorff fuzzy metrics. Also we discuss about the relationships between the Hausdorff fuzzy metrics on the fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces.

Keywords: Fractals, Iterated Function System, Hutchinson- Barnsley Operator, Fuzzy Metric Space, Hausdorff Fuzzy Metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
2810 (λ,μ)-fuzzy Subrings and (λ,μ)-fuzzy Quotient Subrings with Operators

Authors: Shaoquan Sun, Chunxiang Liu

Abstract:

In this paper, we extend the fuzzy subrings with operators to the (λ, μ)-fuzzy subrings with operators. And the concepts of the (λ, μ)-fuzzy subring with operators and (λ, μ)-fuzzy quotient ring with operators are gived, while their elementary properties are discussed.

Keywords: Fuzzy subring with operators, , μ)-fuzzy subring with operators, , μ)-fuzzy quotient ring with operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
2809 Some Application of Random Fuzzy Queueing System Based On Fuzzy Simulation

Authors: Behrouz Fathi-Vajargah, Sara Ghasemalipour

Abstract:

This paper studies a random fuzzy queueing system that the interarrival times of customers arriving at the server and the service times are independent and identically distributed random fuzzy variables. We match the random fuzzy queueing system with the random fuzzy alternating renewal process and we do not use from α-pessimistic and α-optimistic values to estimate the average chance of the event ”random fuzzy queueing system is busy at time t”, we employ the fuzzy simulation method in practical applications. Some theorem is proved and finally we solve a numerical example with fuzzy simulation method.

Keywords: Random fuzzy variables, Fuzzy simulation, Queueing system, Interarrival times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
2808 Method for Solving Fully Fuzzy Assignment Problems Using Triangular Fuzzy Numbers

Authors: Amit Kumar, Anila Gupta, Amarpreet Kaur

Abstract:

In this paper, a new method is proposed to find the fuzzy optimal solution of fuzzy assignment problems by representing all the parameters as triangular fuzzy numbers. The advantages of the pro-posed method are also discussed. To illustrate the proposed method a fuzzy assignment problem is solved by using the proposed method and the obtained results are discussed. The proposed method is easy to understand and to apply for finding the fuzzy optimal solution of fuzzy assignment problems occurring in real life situations.

Keywords: Fuzzy assignment problem, Ranking function, Triangular fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
2807 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651