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Abstract—The purpose of this paper is to present the fuzzy con-
traction properties of the Hutchinson-Barnsley operator on the fuzzy
hyperspace with respect to the Hausdorff fuzzy metrics. Also we
discuss about the relationships between the Hausdorff fuzzy metrics
on the fuzzy hyperspaces. Our theorems generalize and extend some
recent results related with Hutchinson-Barnsley operator in the metric
spaces.
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I. INTRODUCTION

Fuzzy set theory was introduced by Zadeh in 1965 [1].
Many authors have introduced and discussed several notions
of fuzzy metric space in different ways [2], [3], [4] and
also proved fixed point theorems with interesting consequent
results in the fuzzy metric spaces [5].

The Fractal Analysis was introduced by Mandelbrot in
1975 [6] and popularized by various mathematicians [7], [8],
[9], [10], [11]. Sets with non-integral Hausdorff dimension,
which exceeds its topological dimension, are called Fractals
by Mandelbrot [6]. Hutchinson [7] and Barnsley [8] initiated
and developed the Hutchinson-Barnsley theory (HB theory) in
order to define and construct the fractal as a compact invariant
subset of a complete metric space generated by the Iterated
Function System (IFS) of contractions. That is, Hutchinson
introduced an operator on hyperspace of nonempty compact
sets called as Hutchinson-Barnsley operator (HB operator)
to define a fractal set as a unique fixed point by using the
Banach Contraction Theorem in the metric spaces. Here we
introduce the concepts and properties of HB operator in the
fuzzy metric spaces.

In this paper, we present the fuzzy contraction proper-
ties of the HB operator on the fuzzy hyperspace of non-
empty compact sets with respect to the Hausdorff fuzzy
metrics. Also we discuss about the relationships between the
Hausdorff fuzzy metrics on the fuzzy hyperspaces. Here our
theorems generalize and extend some recent results related
with Hutchinson-Barnsley operator in the metric spaces.
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II. PRELIMINARIES

A. HB Operator in Metric Space
In this section, we recall the Hutchinson-Barnsley theory

(HB theory) to define HB operator in the metric space.

Definition II.1 ([8], [9]). Let (X, d) be a metric space and
Ko(X) be the collection of all non-empty compact subsets of
X .

Define, d(x,B) := infy∈B d(x, y) and d(A,B) :=
supx∈A d(x,B) for all x ∈ X and A,B ∈ Ko(X). The
Hausdorff metric or Hausdorff distance (Hd) is a function
Hd : Ko(X) × Ko(X) −→ R defined by

Hd

(
A,B

)
= max

{
d(A,B), d(B,A)

}
.

Then Hd is a metric on the hyperspace of compact sets Ko(X)
and hence (Ko(X), Hd) is called a Hausdorff metric space.

Definition II.2 ([8], [9]). Let (X, d) be a metric space. We
note that,

(
Ko(Ko(X)),HHd

)
is also a metric space, where

Ko(Ko(X)) is the hyperspace of all non-empty compact
subsets of (Ko(X), Hd) and HHd

is the Hausdorff metric on
Ko(Ko(X)) implied by the Hausdorff metric Hd on Ko(X).

That is, for all A ,B ∈ Ko(Ko(X)),

HHd

(
A ,B

)
= max

{
Hd(A ,B), Hd(B,A )

}
,

where Hd(A ,B) := supA∈A Hd(A,B) and Hd(A,B) :=
infB∈B Hd(A,B) for all A ∈ Ko(X) and A ,B ∈
Ko(Ko(X)).

Definition II.3 ([7], [8]). Let (X, d) be a metric space
and fn : X −→ X, n = 1, 2, 3, ..., No (No ∈ N)
be No - contraction mappings with the corresponding
contractivity ratios kn, n = 1, 2, 3, ..., No. The system
{X; fn, n = 1, 2, 3, ..., No} is called an Iterated Function
System (IFS) or Hyperbolic Iterated Function System with
the ratio k = maxNo

n=1 kn.

Then the Hutchinson-Barnsley operator (HB operator) of
the IFS is a function F : Ko(X) −→ Ko(X) defined by

F (B) =
No⋃
n=1

fn(B), for all B ∈ Ko(X).

Theorem II.1 ([7], [8]). Let (X, d) be a metric space. Let
{X; fn, n = 1, 2, 3, ..., No;No ∈ N} be an IFS. Then, the
HB operator (F ) is a contraction mapping on (Ko(X), Hd).
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Theorem II.2 (HB Theorem [7], [8]). Let
(X, d) be a complete metric space and
{X; fn, n = 1, 2, 3, ..., No;No ∈ N} be an IFS. Then,
there exists only one compact invariant set A∞ ∈ Ko(X) of
the HB operator (F ) or, equivalently, F has a unique fixed
point namely A∞ ∈ Ko(X).

Definition II.4 ([8]). The fixed point A∞ ∈ Ko(X) of the
HB operator F described in the Theorem II.2 is called the
Attractor (Fractal) of the IFS. Sometimes A∞ ∈ Ko(X) is
called as Fractal generated by the IFS and so called as IFS
Fractal.

B. Fuzzy Metric Space
In [1], Zadeh defined a fuzzy set on X as a function f :

X −→ [0, 1]. Here we state the required concepts of fuzzy
metric spaces as follows:

Definition II.5 ([12]). A binary operation ∗ : [0, 1]×[0, 1] −→
[0, 1] is a continuous t-norm, if ([0, 1], ∗) is a topological
monoid with unit 1 such that a ∗ b ≤ c ∗ d whenever a ≤ c,
b ≤ d and a, b, c, d ∈ [0, 1].

Definition II.6 (Kramosil and Michalek [2]). The 3-tuple
(X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set
on X ×X × [0,∞) satisfying the following conditions:

1) M(x, y, 0) = 0,
2) M(x, y, t) = 1 for all t > 0 if and only if x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
5) M(x, y, ·) : [0,∞) −→ [0, 1] is left continuous,

x, y, z ∈ X and t, s > 0.

In order to introduce a Hausdorff topology on the fuzzy
metric space, George and Veeramani [3] modified the above
definition and gave the following.

Definition II.7 (George and Veeramani [3]). The 3-tuple
(X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set
on X ×X × (0,∞) satisfying the following conditions:

1) M(x, y, t) > 0,
2) M(x, y, t) = 1 if and only if x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
5) M(x, y, ·) : (0,∞) −→ [0, 1] is continuous,

x, y, z ∈ X and t, s > 0.

The function M(x, y, t) represents the degree of nearness
between x and y with respect to t. We identify x = y with
M(x, y, t) = 1, for t > 0 and M(x, y, t) = 0 as t −→
∞. From now onwards, a fuzzy metric space refers a fuzzy
metric space of George and Veeramani [3], unless mentioned
specifically.

Definition II.8 ([3]). Let (X, d) be a metric space. Define
a ∗ b = a · b, the usual multiplication for all a, b ∈ [0, 1], and
let Md be the function defined on X ×X × (0,∞) by

Md(x, y, t) =
t

t+ d(x, y)
,

for all x, y ∈ X and t > 0. Then (X,Md, ∗) is a fuzzy metric
space called standard fuzzy metric space, and Md is called as
the standard fuzzy metric induced by the metric d.

Definition II.9 ([3]). Let (X,M, ∗) be a fuzzy metric space.
The open ball B(x, r, t) for t > 0 with centre x ∈ X and
radius r, 0 < r < 1, is defined as

B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r} .
Define

τM =

{
A ⊂ X : x ∈ A⇐⇒ there exists t > 0 and

r, 0 < r < 1, such that B(x, r, t) ⊂ A

}
.

Then τM is a topology on X induced by a fuzzy metric M .

The topologies induced by the metric and the corresponding
standard fuzzy metric are the same. That is, if (X, d) is a
metric space, then the topology τd induced by the metric d
coincides with the topology τMd

induced by the standard fuzzy
metric Md.

Definition II.10 ([13], [14]). A fuzzy B-contraction (Sehgal
contraction) on a fuzzy metric space (X,M, ∗) is a self-
mapping f on X for which

M(f(x), f(y), kt) ≥M(x, y, t),

for all x, y ∈ X and t > 0, where k is a fixed constant in
(0, 1).

C. Hausdorff Fuzzy Metric Space
In [15], Rodriguez-Lopez and Romaguera defined the Haus-

dorff metric on fuzzy hyperspace Ko(X) and constructed
the Hausdorff fuzzy metric space. Besides that the necessary
results of the Hausdorff fuzzy metric on fuzzy hyperspaces are
proved in [15].

Definition II.11 ([15]). Let (X,M, ∗) be a fuzzy metric space
and τM be the topology induced by the fuzzy metric M . We
shall denote by Ko(X), the set of all non-empty compact
subsets of (X, τM ).

Define, M(x,B, t) := supy∈BM(x, y, t) and
M(A,B, t) := infx∈AM(x,B, t) for all x ∈ X and
A,B ∈ Ko(X). The Hausdorff fuzzy metric (HM ) is a
function HM : Ko(X) × Ko(X) × (0,∞) −→ [0, 1] defined
by

HM (A,B, t) = min
{
M(A,B, t),M(B,A, t)

}
.

Then HM is a fuzzy metric on the fuzzy hyperspace of
compact sets, Ko(X), and hence (Ko(X), HM , ∗) is called a
Hausdorff fuzzy metric space.

Proposition II.1 ([15]). Let (X, d) be a metric space. Then,
the Hausdorff fuzzy metric (HMd

) of the standard fuzzy metric
(Md) coincides with the standard fuzzy metric (MHd

) of
the Hausdorff metric (Hd) on Ko(X), i.e., HMd

(A,B, t) =
MHd

(A,B, t) for all A,B ∈ Ko(X) and t > 0.
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Definition II.12. Let (X,M, ∗) be a fuzzy metric space. We
observe that,

(
Ko(Ko(X)),HHM

, ∗
)

is also a fuzzy metric
space, where Ko(Ko(X)) is the fuzzy hyperspace of all
non-empty compact subsets of (Ko(X), HM , ∗) and HHM

is the Hausdorff fuzzy metric on Ko(Ko(X)) implied by
the Hausdorff fuzzy metric HM on Ko(X). That is, for all
A ,B ∈ Ko(Ko(X)),

HHM

(
A ,B

)
= min

{
HM (A ,B), HM (B,A )

}
,

where HM (A ,B) := infA∈A HM (A,B) and HM (A,B) :=
supB∈B HM (A,B) for all A ∈ Ko(X) and A ,B ∈
Ko(Ko(X)).

III. FUZZY HB OPERATOR

In this section, we define the Fuzzy IFS and Fuzzy HB
operator in the fuzzy metric spaces.

Definition III.1. Let (X,M, ∗) be a fuzzy metric space
and fn : X −→ X, n = 1, 2, 3, ..., No (No ∈ N)
be No - fuzzy B-contraction mappings. Then the system
{X; fn, n = 1, 2, 3, ..., No} is called a Fuzzy Iterated Func-
tion System (FIFS) of fuzzy B-contractions on the fuzzy metric
space (X,M, ∗).
Definition III.2. Let (X,M, ∗) be a fuzzy metric space. Let
{X; fn, n = 1, 2, 3, ..., No;No ∈ N} be a FIFS of fuzzy B-
contractions. Then the Fuzzy Hutchinson-Barnsley operator
(FHB operator) of the FIFS is a function F : Ko(X) −→
Ko(X) defined by

F (B) =
No⋃
n=1

fn(B), for all B ∈ Ko(X).

Definition III.3. Let (X,M, ∗) be a complete fuzzy metric
space. Let {X; fn, n = 1, 2, 3, ..., No;No ∈ N} be a FIFS of
fuzzy B-contractions and F be the FHB operator of the FIFS.
We say that the set A∞ ∈ Ko(X) is Fuzzy Attractor (Fuzzy
Fractal) of the given FIFS, if A∞ is a unique fixed point of the
FHB operator F . Usually such A∞ ∈ Ko(X) is also called
as Fractal generated by the FIFS of fuzzy B-contractions and
so called as FIFS Fractal of fuzzy B-contractions.

IV. FUZZY CONTRACTIVITY OF HB OPERATOR

Now we prove the interesting results about the contraction
properties of operators with respect to the Hausdorff Fuzzy
Metric on Ko(X).

Theorem IV.1. Let (X, d) be a metric space. Let f : X −→ X
be a contraction function, with a contractivity ratio k. Then,

HMd

(
f(A), f(B), t

)
≥ HMd

(
A,B, t

)
for all A,B ∈ Ko(X) and t > 0.

Proof:
Fix t > 0 and let A,B ∈ Ko(X). Since f is contraction on

(X, d) with the contractivity ratio k ∈ (0, 1) and by Theorem
II.1 for the case N = 1, we have

Hd(f(A), f(B)) ≤ kHd(A,B).

Since t > 0 and k ∈ (0, 1),

kt

kt+Hd(f(A), f(B))
≥ kt

kt+ kHd(A,B)
=

t

t+Hd(A,B)

By using the Proposition II.1, we have

HMd
(f(A), f(B), kt) = MHd

(f(A), f(B), kt)

=
kt

kt+Hd(f(A), f(B))

≥ t

t+Hd(A,B)
= MHd

(A,B, t)
= HMd

(A,B, t).

The above Theorem IV.1 shows that f is a fuzzy B-
contraction function on Ko(X) with respect to the Hausdorff
fuzzy metric HMd

implied by the standard fuzzy metric Md,
if f is contraction on a metric space (X, d). The following
theorem is somewhat generalization of the Theorem IV.1.

Theorem IV.2. Let (X,M, ∗) be a fuzzy metric space. Let
(Ko(X), HM , ∗) be the corresponding Hausdorff fuzzy metric
space. Suppose f : X −→ X is a fuzzy B-Contraction function
on (X,M, ∗). Then for k ∈ (0, 1),

HM

(
f(A), f(B), kt

)
≥ HM

(
A,B, t

)
for all A,B ∈ Ko(X) and t > 0.

Proof:
Fix t > 0. Let A,B ∈ Ko(X).
For given k ∈ (0, 1), we get

M(f(x), f(y), kt) ≥ M(x, y, t), ∀x, y ∈ X

M(f(x), f(y), kt) ≥ M(x, y, t), ∀x ∈ A & y ∈ B

sup
y∈B

M(f(x), f(y), kt) ≥ sup
y∈B

M(x, y, t), ∀x ∈ A

M(f(x), f(B), kt) ≥ M(x,B, t), ∀x ∈ A

inf
x∈A

M(f(x), f(B), kt) ≥ inf
x∈A

M(x,B, t)

M(f(A), f(B), kt) ≥ M(A,B, t)

Similarly, M(f(B), f(A), kt) ≥M(B,A, t).

Hence
min

{
M
(
f(A), f(B), kt

)
,M
(
f(B), f(A), kt

)}

≥ min
{
M(A,B, t),M(B,A, t)

}
.

i.e.,HM

(
f(A), f(B), kt

)
≥ HM

(
A,B, t

)
.

This completes the proof.
The above Theorem IV.2 shows that f is a fuzzy B-

contraction function on Ko(X) with respect to the Hausdorff
fuzzy metric HM , if f is fuzzy B-contraction on a fuzzy metric
space (X,M, ∗).
Lemma IV.1. Let (X,M, ∗) be a fuzzy metric space. If
B,C ⊂ X such that B ⊂ C, then M(x,B, t) ≤ M(x,C, t)
for all x ∈ X and t > 0.
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Proof:
Fix t > 0. Let x ∈ X and B,C ⊂ X such that B ⊂ C.
Then, M(x,B, t) = supb∈BM(x, b, t)

≤ supb∈CM(x, b, t) = M(x,C, t).

Lemma IV.2. Let (X,M, ∗) be a fuzzy metric space. If
B,C ⊂ X such that B ⊂ C, then M(A,B, t) ≤ M(A,C, t)
for all A ⊂ X and t > 0.

Proof:
Fix t > 0. Let A,B,C ⊂ X such that B ⊂ C.
By the Lemma IV.1, we have

M(A,B, t) = inf
a∈A

M(a,B, t)

M(A,B, t) ≤ M(a,B, t),∀a ∈ A

M(A,B, t) ≤ M(a,C, t),∀a ∈ A

M(A,B, t) ≤ inf
a∈A

M(a,C, t)

M(A,B, t) ≤ M(A,C, t).

Lemma IV.3. Let (X,M, ∗) be a fuzzy
metric space. If A,B,C ⊂ X , then

M
(
A ∪ B,C, t

)
= min

{
M(A,C, t),M(B,C, t)

}
for

all t > 0.

Proof:
Fix t > 0. Let A,B,C ⊂ X .
Then,

M
(
A ∪B,C, t

)
= inf

x∈A∪B
M(x,C, t)

= min
{

inf
x∈A

M(x,C, t), inf
x∈B

M(x,C, t)
}

= min
{
M(A,C, t),M(B,C, t)

}
.

Lemma IV.4. Let (X,M, ∗) be a fuzzy metric space. Let
(Ko(X), HM , ∗) be the corresponding Hausdorff fuzzy metric
space. If A,B,C,D ∈ Ko(X), then

HM

(
A∪B,C ∪D, t

)
≥ min

{
HM (A,C, t), HM (B,D, t)

}
,

∀t > 0.

Proof:
Fix t > 0. Let A,B,C,D ∈ Ko(X).
By using the Lemmas IV.2 and IV.3, we get

M
(
A ∪B,C ∪D, t

)

= min
{
M(A,C ∪D, t),M(B,C ∪D, t)

}

≥ min
{
M(A,C, t),M(B,D, t)

}

≥ min
{
HM (A,C, t), HM (B,D, t)

}
.

Similarly, M
(
C ∪D,A ∪B, t

)
≥ min

{
HM (A,C, t), HM (B,D, t)

}
.

Hence
min

{
M(A ∪B,C ∪D, t),M(C ∪D,A ∪B, t)

}

≥ min
{
HM (A,C, t), HM (B,D, t)

}
.

This completes the proof.
The following theorem is a generalized version of the

Theorem IV.2.

Theorem IV.3. Let (X,M, ∗) be a fuzzy metric space. Let
(Ko(X), HM , ∗) be the corresponding Hausdorff fuzzy metric
space. Suppose fn : X −→ X,n = 1, 2, ..., No;No ∈
N, is a fuzzy B-Contraction function on (X,M, ∗).
Then the HB operator is also fuzzy B-Contraction on
(Ko(X), HM , ∗).

Proof:
Fix t > 0. Let A,B ∈ Ko(X).
By using the Lemma IV.4 and the Theorem IV.2 for a given

k ∈ (0, 1), we get

HM

(
F (A), F (B), kt

)
= HM

(
No⋃
n=1

fn(A),
No⋃
n=1

fn(B), kt

)

≥
N

min
n=1

HM

(
fn(A), fn(B), kt

)
≥ HM (A,B, t).

This completes the proof.
From the above Theorem IV.3, we conclude that the HB

operator F is a fuzzy B-contraction function on Ko(X) with
respect to the Hausdorff fuzzy metric HM , if fn is fuzzy B-
contraction on a fuzzy metric space (X,M, ∗) for each n ∈
{1, 2, 3, ..., No}.

V. HAUSDORFF FUZZY METRICS ON Ko(X) AND
Ko(Ko(X))

Now, we discuss about the relationships between the fuzzy
hyperspaces Ko(X) and Ko(Ko(X)) and the Hausdorff fuzzy
metrics HM and HHM

.

Theorem V.1. Let (X,M, ∗) be a fuzzy metric space. Let
A ,B ∈ Ko(Ko(X)) be such that

{a ∈ A : A ∈ A } , {b ∈ B : B ∈ B} ∈ Ko(X).

Then

HM

(
{a ∈ A : A ∈ A } , {b ∈ B : B ∈ B} , t

)

≥ HHM
(A ,B, t)

for all t > 0.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:8, 2011 

1421International Scholarly and Scientific Research & Innovation 5(8) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
8,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
02

07
.p

df



Proof:
Fix t > 0. Firstly, we note that

M
(
B, {a ∈ A : A ∈ A } , t

)

= inf
b∈B

M
(
b, {a ∈ A : A ∈ A } , t

)
= inf

b∈B
sup

{a∈A:A∈A }
M(b, a, t)

= inf
b∈B

sup
A∈A

sup
a∈A

M(b, a, t)

≥ sup
A∈A

inf
b∈B

sup
a∈A

M(b, a, t)

= sup
A∈A

M(B,A, t).

It follows that

M
(
{b ∈ B : B ∈ B} , {a ∈ A : A ∈ A } , t

)

= inf
{b∈B:B∈B}

M
(
b, {a ∈ A : A ∈ A } , t

)
= inf

B∈B
inf
b∈B

M
(
b, {a ∈ A : A ∈ A }, t

)
= inf

B∈B
M
(
B, {a ∈ A : A ∈ A }, t

)
≥ inf

B∈B
sup
A∈A

M(B,A, t).

Similarly, M
(
{a ∈ A : A ∈ A } , {b ∈ B : B ∈ B} , t

)
≥ infA∈A supB∈B M(A,B, t).

Hence

HM

(
{a ∈ A : A ∈ A }, {b ∈ B : B ∈ B}, t

)

= min
{
M
(
{a ∈ A : A ∈ A }, {b ∈ B : B ∈ B}, t

)
,

≥ min
{

inf
A∈A

sup
B∈B

M(A,B, t), inf
B∈B

sup
A∈A

M(B,A, t)
}
.

But

HHM
(A ,B, t)

= min
{
HM (A ,B, t), HM (B,A , t)

}

= min
{

inf
A∈A

sup
B∈B

HM (A,B, t), inf
B∈B

sup
A∈A

HM (B,A, t)
}

= min

{
inf
A∈A

sup
B∈B

min
{
M(A,B, t),M(B,A, t)

}
,

inf
B∈B

sup
A∈A

min
{
M(B,A, t),M(A,B, t)

}}

≤ min
{

inf
A∈A

sup
B∈B

M(A,B, t), inf
B∈B

sup
A∈A

M(B,A, t)
}
.

The above two inequalities concludes the proof.
The above Theorem V.1 declares that HM is a ‘stronger’

Hausdorff fuzzy metric than HHM
.

VI. CONCLUSION

This paper presented the fuzzy contraction properties of
the Hutchinson-Barnsley operator on the fuzzy hyperspace
of with respect to the Hausdorff fuzzy metrics. Further, we
discussed about the relationships between the Hausdorff fuzzy
metrics HM and HHM

on the fuzzy hyperspaces Ko(X) and
Ko(Ko(X)) respectively. This paper will leads our direction
to improve the Hutchinson-Barnsley Theory in the sense of
fuzzy B-contractions in order to define a fractal set in the
fuzzy metric spaces as a unique fixed point of the Fuzzy HB
operator.
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