Search results for: Fuzzy CMeans (FCM) clustering
1241 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19301240 Hutchinson-Barnsley Operator in Fuzzy Metric Spaces
Authors: R. Uthayakumar, D. Easwaramoorthy
Abstract:
The purpose of this paper is to present the fuzzy contraction properties of the Hutchinson-Barnsley operator on the fuzzy hyperspace with respect to the Hausdorff fuzzy metrics. Also we discuss about the relationships between the Hausdorff fuzzy metrics on the fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces.Keywords: Fractals, Iterated Function System, Hutchinson- Barnsley Operator, Fuzzy Metric Space, Hausdorff Fuzzy Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021239 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751238 (λ,μ)-fuzzy Subrings and (λ,μ)-fuzzy Quotient Subrings with Operators
Authors: Shaoquan Sun, Chunxiang Liu
Abstract:
In this paper, we extend the fuzzy subrings with operators to the (λ, μ)-fuzzy subrings with operators. And the concepts of the (λ, μ)-fuzzy subring with operators and (λ, μ)-fuzzy quotient ring with operators are gived, while their elementary properties are discussed.
Keywords: Fuzzy subring with operators, (λ, μ)-fuzzy subring with operators, (λ, μ)-fuzzy quotient ring with operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621237 Some Application of Random Fuzzy Queueing System Based On Fuzzy Simulation
Authors: Behrouz Fathi-Vajargah, Sara Ghasemalipour
Abstract:
This paper studies a random fuzzy queueing system that the interarrival times of customers arriving at the server and the service times are independent and identically distributed random fuzzy variables. We match the random fuzzy queueing system with the random fuzzy alternating renewal process and we do not use from α-pessimistic and α-optimistic values to estimate the average chance of the event ”random fuzzy queueing system is busy at time t”, we employ the fuzzy simulation method in practical applications. Some theorem is proved and finally we solve a numerical example with fuzzy simulation method.
Keywords: Random fuzzy variables, Fuzzy simulation, Queueing system, Interarrival times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20841236 Analysis on Fractals in Intuitionistic Fuzzy Metric Spaces
Authors: R. Uthayakumar, D. Easwaramoorthy
Abstract:
This paper investigates the fractals generated by the dynamical system of intuitionistic fuzzy contractions in the intuitionistic fuzzy metric spaces by generalizing the Hutchinson-Barnsley theory. We prove some existence and uniqueness theorems of fractals in the standard intuitionistic fuzzy metric spaces by using the intuitionistic fuzzy Banach contraction theorem. In addition to that, we analyze some results on intuitionistic fuzzy fractals in the standard intuitionistic fuzzy metric spaces with respect to the Hausdorff intuitionistic fuzzy metrics.Keywords: Fractal Analysis, Fixed Point, Contraction, Iterated Function System, Intuitionistic Fuzzy Metric Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511235 Method for Solving Fully Fuzzy Assignment Problems Using Triangular Fuzzy Numbers
Authors: Amit Kumar, Anila Gupta, Amarpreet Kaur
Abstract:
In this paper, a new method is proposed to find the fuzzy optimal solution of fuzzy assignment problems by representing all the parameters as triangular fuzzy numbers. The advantages of the pro-posed method are also discussed. To illustrate the proposed method a fuzzy assignment problem is solved by using the proposed method and the obtained results are discussed. The proposed method is easy to understand and to apply for finding the fuzzy optimal solution of fuzzy assignment problems occurring in real life situations.
Keywords: Fuzzy assignment problem, Ranking function, Triangular fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16961234 Analysis of Diverse Clustering Tools in Data Mining
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.
Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22011233 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33761232 Intuitionistic Fuzzy Subalgebras (Ideals) with Thresholds (λ, μ) of BCI-Algebras
Authors: Shaoquan Sun, Qianqian Li
Abstract:
Based on the theory of intuitionistic fuzzy sets, the concepts of intuitionistic fuzzy subalgebras with thresholds (λ, μ) and intuitionistic fuzzy ideals with thresholds (λ, μ) of BCI-algebras are introduced and some properties of them are discussed.
Keywords: BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy subalgebra with thresholds (λ, μ), intuitionistic fuzzy ideal with thresholds (λ, μ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40861231 Solution of Fuzzy Maximal Flow Problems Using Fuzzy Linear Programming
Authors: Amit Kumar, Manjot Kaur
Abstract:
In this paper, the fuzzy linear programming formulation of fuzzy maximal flow problems are proposed and on the basis of the proposed formulation a method is proposed to find the fuzzy optimal solution of fuzzy maximal flow problems. In the proposed method all the parameters are represented by triangular fuzzy numbers. By using the proposed method the fuzzy optimal solution of fuzzy maximal flow problems can be easily obtained. To illustrate the proposed method a numerical example is solved and the obtained results are discussed.Keywords: Fuzzy linear programming, Fuzzy maximal flow problem, Ranking function, Triangular fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19741230 Multiplicative Functional on Upper Triangular Fuzzy Matrices
Authors: Liu Ping
Abstract:
In this paper, for an arbitrary multiplicative functional f from the set of all upper triangular fuzzy matrices to the fuzzy algebra, we prove that there exist a multiplicative functional F and a functional G from the fuzzy algebra to the fuzzy algebra such that the image of an upper triangular fuzzy matrix under f can be represented as the product of all the images of its main diagonal elements under F and other elements under G.Keywords: Multiplicative functional, triangular fuzzy matrix, fuzzy addition operation, fuzzy multiplication operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11961229 A Survey: Clustering Ensembles Techniques
Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha
Abstract:
The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34481228 A Study on Intuitionistic Fuzzy h-ideal in Γ-Hemirings
Authors: S.K. Sardar, D. Mandal, R. Mukherjee
Abstract:
The notions of intuitionistic fuzzy h-ideal and normal intuitionistic fuzzy h-ideal in Γ-hemiring are introduced and some of the basic properties of these ideals are investigated. Cartesian product of intuitionistic fuzzy h-ideals is also defined. Finally a characterization of intuitionistic fuzzy h-ideals in terms of fuzzy relations is obtained.Keywords: Γ-hemiring, fuzzy h-ideal, normal, cartesian product.Mathematics Subject Classification[2000] :08A72, 16Y99
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42691227 Intuitionistic T-S Fuzzy Subalgebras and Ideals in BCI-algebras
Authors: Shaoquan Sun, Qianqian Li
Abstract:
The aim of this paper is to introduce the notions of intuitionistic T-S fuzzy subalgebras and intuitionistic T-S fuzzy ideals in BCI-algebras, and then to investigate their basic properties.
Keywords: BCI-algebra, intuitionistic T-S fuzzy subalgebra, intuitionistic T-S fuzzy ideal, norm intersection, direct product, epimorphism, isomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16041226 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23021225 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System
Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.
Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4771224 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations
Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin
Abstract:
In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.
Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871223 Fuzzy Control of the Air Conditioning System at Different Operating Pressures
Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah
Abstract:
The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.
Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33661222 On Completely Semiprime, Semiprime and Prime Fuzzy Ideals in Ordered Semigroups
Authors: Jian Tang
Abstract:
In this paper, we first introduce the new concept of completely semiprime fuzzy ideals of an ordered semigroup S, which is an extension of completely semiprime ideals of ordered semigroup S, and investigate some its related properties. Especially, we characterize an ordered semigroup that is a semilattice of simple ordered semigroups in terms of completely semiprime fuzzy ideals of ordered semigroups. Furthermore, we introduce the notion of semiprime fuzzy ideals of ordered semigroup S and establish the relations between completely semiprime fuzzy ideals and semiprime fuzzy ideals of S. Finally, we give a characterization of prime fuzzy ideals of an ordered semigroup S and show that a nonconstant fuzzy ideal f of an ordered semigroup S is prime if and only if f is twovalued, and max{f(a), f(b)} = inf f((aSb]), ∀a, b ∈ S.
Keywords: Ordered fuzzy point, fuzzy left (right) ideal of anordered semigroup, completely semiprime fuzzy ideal, semiprimefuzzy ideal, prime fuzzy ideal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561221 Ontology-based Concept Weighting for Text Documents
Authors: Hmway Hmway Tar, Thi Thi Soe Nyaunt
Abstract:
Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.Keywords: Clustering, Concept Weight, Document clustering, Feature Selection, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24041220 Fuzzy Cost Support Vector Regression
Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati
Abstract:
In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.
Keywords: Support vector regression, Fuzzy input, Fuzzy cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711219 Fuzzy Bi-ideals in Ternary Semirings
Authors: Kavikumar, Azme Khamis, Young Bae Jun,
Abstract:
The purpose of the present paper is to study the concept of fuzzy bi-ideals in ternary semirings. We give some characterizations of fuzzy bi-ideals. Characterizations of regular ternary semirings are provided.Keywords: Fuzzy ternary subsemiring, fuzzy quasi-ideal, fuzzy bi-ideal, regular ternary semiring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701218 A New Class χ2 (M, A,) of the Double Difference Sequences of Fuzzy Numbers
Authors: N.Subramanian, U.K.Misra
Abstract:
The aim of this paper is to introduce and study a new concept of strong double χ2 (M,A, Δ) of fuzzy numbers and also some properties of the resulting sequence spaces of fuzzy numbers were examined.
Keywords: Modulus function, fuzzy number, metric space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22961217 Journey on Image Clustering Based on Color Composition
Authors: Achmad Nizar Hidayanto, Elisabeth Martha Koeanan
Abstract:
Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.Keywords: Image clustering, feature extraction, RGB, HSV, L*a*b*, Gaussian Mixture Model (GMM), histogram, Agglomerative Hierarchical Clustering (AHC), K-Means, Expectation-Maximization (EM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051216 Hutchinson-Barnsley Operator in Intuitionistic Fuzzy Metric Spaces
Authors: R. Uthayakumar, D. Easwaramoorthy
Abstract:
The main purpose of this paper is to prove the intuitionistic fuzzy contraction properties of the Hutchinson-Barnsley operator on the intuitionistic fuzzy hyperspace with respect to the Hausdorff intuitionistic fuzzy metrics. Also we discuss about the relationships between the Hausdorff intuitionistic fuzzy metrics on the intuitionistic fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces to the intuitionistic fuzzy metric spaces.
Keywords: Contraction, Iterated Function System, Hutchinson- Barnsley Operator, Intuitionistic Fuzzy Metric Space, Hausdorff Intuitionistic Fuzzy Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921215 Fuzzy Join Dependency in Fuzzy Relational Databases
Authors: P. C. Saxena, D. K. Tayal
Abstract:
The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and partially known information can also be stored in databases in a formal way. However like classical databases, the fuzzy relational databases also undergoes decomposition during normalization, the issue of joining the decomposed fuzzy relations remains intact. Our effort in the present paper is to emphasize on this issue. In this paper we define fuzzy join dependency in the framework of type-1 fuzzy relational databases & type-2 fuzzy relational databases using the concept of fuzzy equality which is defined using fuzzy functions. We use the fuzzy equi-join operator for computing the fuzzy equality of two attribute values. We also discuss the dependency preservation property on execution of this fuzzy equi- join and derive the necessary condition for the fuzzy functional dependencies to be preserved on joining the decomposed fuzzy relations. We also derive the conditions for fuzzy join dependency to exist in context of both type-1 and type-2 fuzzy relational databases. We find that unlike the classical relational databases even the existence of a trivial join dependency does not ensure lossless join decomposition in type-2 fuzzy relational databases. Finally we derive the conditions for the fuzzy equality to be non zero and the qualification of an attribute for fuzzy key.Keywords: Fuzzy - equi join, fuzzy functions, fuzzy join dependency, type-1 fuzzy relational database, type-2 fuzzy relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20381214 (∈,∈∨q)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators
Authors: Yuli Hu, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the concepts of (∈, ∈∨q)-fuzzy subalgebras, (∈,∈∨q)-fuzzy ideals and (∈,∈∨q)-fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.Keywords: BCI-algebras with operators, (∈, ∈∨q)-fuzzy subalgebras, (∈, ∈∨q)-fuzzy ideals, (∈, ∈∨q)-fuzzy quotient algebras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8491213 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25901212 2D Structured Non-Cyclic Fuzzy Graphs
Authors: T. Pathinathan, M. Peter
Abstract:
Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.Keywords: Double layered fuzzy graph, double layered non-cyclic fuzzy graph, strong, order, degree and size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835