Open Science Index, Mathematical and Computational Sciences Vol:3, No:7, 2009 publications.waset.org/9382.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:3, No:7, 2009

Fuzzy Bi-ideals in Ternary Semirings

Kavikumar, Azme Khamis, and Young Bae Jun

Abstract—The purpose of the present paper is to study the concept
of fuzzy bi-ideals in ternary semirings. We give some characteriza-
tions of fuzzy bi-ideals. Characterizations of regular ternary semirings
are provided.
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I. INTRODUCTION

ERNARY semirings are one of the generalized structures

of semirings. The notion of ternary algebraic system
was introduced by Lehmer [8]. He investigated certain ternary
algebraic systems called triplexes which turn out to be commu-
tative ternary groups. Dutta and Kar [1] introduced the notion
of ternary semiring which is a generalization of the ternary
ring introduced by Lister [9]. Good and Hughes [3] introduced
the notion of bi-ideal and Steinfeld [11], [12] introduced the
notion of quasi-ideal. In 2005, Kar [5] studied quasi-ideals and
bi-ideals of ternary semirings.

Ternary semiring arises naturally, for instance, the ring of
integers Z is a ternary semiring. The subset ZT of all positive
integers of Z forms an additive semigroup and which is closed
under the ring product. Now, if we consider the subset Z~ of
all negative integers of Z, then we see that Z™~ is closed under
the binary ring product; however, Z~ is not closed under the
binary ring product, i.e., Z~ forms a ternary semiring. Thus,
we see that in the ring of integers Z, Z" forms a semiring
whereas Z~ forms a ternary semiring. More generally; in
an ordered ring, we can see that its positive cone forms a
semiring whereas its negative cone forms a ternary semiring.
Thus a ternary semiring may be considered as a counterpart
of semiring in an ordered ring.

The theory of fuzzy sets was first inspired by Zadeh [14].
Fuzzy set theory has been developed in many directions by
many scholars and has evoked great interest among mathemati-
cians working in different fields of mathematics. Rosenfeld
[13] introduced fuzzy sets in the realm of group theory. Fuzzy
ideals in rings were introduced by Liu [10] and it has been
studied by several authors. Jun [4] and Kim and Park [7] have
also studied fuzzy ideals in semirings. In 2007, [6] we have
introduced the notions of fuzzy ideals and fuzzy quasi-ideals
in ternary semirings.

Our main purpose in this paper is to introduce the notions
of fuzzy bi-ideal in ternary semirings and study regular ternary
semiring in terms of these two subsystems of fuzzy subsemir-
ings. We give some characteriztions of fuzzy bi-ideals.
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II. PRELIMINARIES

In this section, we review some definitions and some results
which will be used in later sections.

Definition 2.1. A set R together with associative binary
operations called addition and multiplication (denoted by +
and . respectively) will be called a semiring provided:

(i) Addition is a commutative operation.

(i1) there exists 0€ R such that a+ 0=a and a0=0a=0

for each ac€R,

(iii) multiplication distributes over addition both

from the left and the right. i.e., a(b+ ¢) = ab + ac

and (a + b)c = ac+ be
Definition 2.2. A nonempty set S together with a binary
operation, called addition and a ternary multiplication, denoted
by juxtaposition, is said to be a ternary semiring if (S, +) is
an additive commutative semigroup satisfying the following
conditions:

() (abe)de = a(bed)e = ab(cde)

(i) (a + b)ed = acd + bed

(iii) a(b+ ¢)d = abd + acd

(iv) ab(c + d) = abc + abd, for all a,b,c,d,e € S.
Definition 2.3. (i) Let S be a ternary semiring. An additive
subsemigroup 1" of S is called a ternary subsemiring of S if
titots € T, for all t1,to,t3 € T.
(i) Let S be a ternary semiring.If there exists an element
0c S such that O+a = a and Oab = a0b=ab0=0 for all
a,b € S, then ”0” is called the zero element or simply the
zero of the ternary semiring S. In this case we say that S is
a ternary semiring with zero.
(iii) Let A, B, C be three subsets of ternary semiring S. Then
by ABC, we mean the set of all finite sums of the form
Zaib]‘(jk with a; € A, bj € B,c, € C.
(iv) An additive subsemigroup I of S is called a left (resp.,
right, and lateral) ideal of S if s1s2i (resp.isisa, s19S2)€ I,
for all s1,50 € S and ¢ € I. If I is both left and right
ideal of S, then I is called a two-sided ideal of S. If I
is a left, a right and a lateral ideal of S, then I is called
an ideal of S. An ideal I of S is called a proper ideal if I # S.

Definition 2.4. (i) An additive subsemigroup (Q,+)
of a ternary semiring S is called a quasi-ideal of S if
QSSN(SQS + SSQSS)NSSQ C Q.

(ii) An additive subsemigroup (Q, +) of a ternary semiring S
is called a bi-ideal of S if QSQSQ C Q.

Now, we review the concept of fuzzy sets [10], [13], [14]).
Let X be a non-empty set. A map p: X — [0, 1] is called a
fuzzy set in X, and the complement of a fuzzy set p in X,
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denoted by Tz, is the fuzzy set in X given by f(x) = 1 — pu(z)
for all x € X.

Let X and Y be two non-empty sets and f : X — Y a
function, and let x4 and v be any fuzzy sets in X and Y
respectively. The image of p under f, denoted by f(u), is a
fuzzy set in Y defined by

fw)(y) = {S“pwefwy)/i(fv) f(y) #0,

0 otherwise,

for each y € Y. The preimage of v underf, denoted by
f~1(v),is a fuzzy setin X defined by (f =1 (v))(z) = v(f(z))
for each = € X.

Definition 2.5. A fuzzy ideal of a semiring R is a function
A: R — [0, 1] satisfying the following conditions:

(i) A is a fuzzy subsemigroup of (R,+); i.e., A(z —

y) = min{A(z), A(y)},

(ii) A(zy) > maz{A(x), A(y)}, for all z,y € R
Definition 2.6. Let A and B be any two subsets of S. Then
ANB, AUB, A+B and Ao B are fuzzy subsets of S defined
b

g (AN B) = min{A(z), B(z)}

(AU B) = maz{A(z), B(x)}

(A4 B)(x) {sup{mm{A(y),A<z)}, i r— gtz
0 otherwise
_ Jsup{min{A(y), A(2)}, if z =yz,
e = {O otherwise

For any x € S and t € (0, 1], define a fuzzy point x; as
ify==x

t,
zily) = {0 ify+a

If z; is a fuzzy point and A is any fuzzy subset of S and
r; < A, then we write x; € A. Note that x; € A if and only
if x € Ay where A, is a level subset of A. If z,. and y, are
fuzzy points, than z,.ys = (TY)min{r,s}-

Definition 2.7. [6]. A fuzzy subset A of a fuzzy subsemigroup
of S is called a fuzzy ternary subsemiring of S if:
() Az —y) > min{A(z), A(y)}, for all z,y € S
(i) A(—) = A(x)
(iii) A(zyz) > min{A(z), A(y), A(z)}, for all
x,y,z € 8S.
Definition 2.8 [6]. A fuzzy subsemigroup A of a ternary
semiring S called a fuzzy ideal of S if A : S — [0,1]
satisfying the following conditions:
1) A(x —y) > min{A(z), A(y)}, for all z,y € S
(i) Aeyz) > A(2)
(iii) A(zyz) > A(x) and
(iv) A(zyz) > A(y), for all z,y,z € S
A fuzzy subset A with conditions (i) and (ii) is called a fuzzy
left ideal of S. If A satisfies (i) and (iii), then it is called a
fuzzy right ideal of S. Also if A satisfies (i) and (iv), then it
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is called a fuzzy lateral ideal of S. A fuzzy ideal is a ternary
semiring of S, if A is a fuzzy left, a fuzzy right and a fuzzy
lateral ideal of S. It is clear that A is a fuzzy ideal of a ternary
semiring S if and only if A(zyz) > max{A(z), A(y), A(z)}
for all z,y,z € S, and that every fuzzy left (right, lateral)
ideal of S is a fuzzy ternary subsemiring of S.

Example 2.9 [6]. Let Z be a ring of integers and S =Z" ¢ C
Z be the set of all negative integers with zero. Then with the
binary addition and ternary multiplication, (Z™ ¢, +, .) forms a
ternary semiring S with zero. Define a fuzzy subset A : Z —
[0, 1], we have

ifxeZ g
otherwise

Then A is a fuzzy ternary subsemiring of S.
Example 2.10 [6]. Consider the set integer module 5, non-

positive integer Z~ 5 = {0,—1,—2,—3, —4} with the usual
addition and ternary multiplication, we have

+ [0 1234 -J0[-1]2]3]+4
0]0]|-1|2]|3[4|[of0o]0]0[0]oO
d]-1 23 |4]o|-1]o]1[2]3]4
22 [3[4l0|-1|[2]0[2]41]3
33 4]0 ]|1]2|[3[0[3[1][4]2
440 1] 2]3|[4]0[4[3[2]1
~JO0]1]2]3]4
0(0]/0]0]|0]O
T](0[-1|2]3]4
2102413
310 3[-1]4]=2
4lo[4[3[ 21

Clearly (Z;, +, .) is a ternary semiring. Let a fuzzy
subset A : Z; — [0,1] be defined by A(0) = ¢, and
A(-1) = A(-2) = A(-3) = A(—4) = t1, where ty > #;
and tp,t; € [0,1]. Routine calculations show that A is a
fuzzy ideal of Z™ 5.

Definition 2.11 [6] Let A be a fuzzy subset of ternary semiring
S. We define
SAS 4+ SSASS(z)

) sup{min{A(a), A(b)}, if z = z(a + zby)y,
B 0, otherwise

for all x,y,a,be S

III. Fuzzy BI-IDEAL OF TERNARY SEMIRING

Definition 3.1. A fuzzy subsemigroup x of a ternary semiring
S is called a fuzzy quasi-ideal of S [6] if
(FOIDuSSNSuSNSSu <
(FQI2)pSS NSSuSSNSSu <
ie., p(x) = minf(uSS)(x), (SuS + SSuSS)(x), (SSp) (=)}
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To strengthen the above definition, we present the following
example.

Example 3.2. Consider the ternary semiring (Zg ,+, .) as
defined in Example 2.10 in this paper. Let A = {0, -2, —3}.
Then SSA = {-2,-3,—4}, (SAS + SSASS) =
{0,-1,-2,-3} and ASS = {-1,—2,-3}. Therefore
ASSN(SAS+SSASS)NSSA ={-2,-3} C A. Hence A
is a quasi-ideal of Z . Define a fuzzy subset A : Z; — [0, 1]
by A(0) = A(—2) = A(-3) =1 and A(—1) = A(—4) = 0.
Clearly A is a fuzzy quasi-ideal of Z; .

Definition 3.3. A fuzzy ternary subsemiring o of S is called
a fuzzy bi-ideal of S if

puSuSp < p

e, plrsiysez) = min{p(x), wly),p(z)} ¥

Ty, z, w,v €S

Example 3.4 Let Z~=S be the set of all negative integers.
Then Z~ is a ternary semiring under usual addition and ternary
multiplication. Let B =2S Thus BSBSB = 2SS2SS2S =
6(SSS)SS = 6(SSS) = 6S C 2S = B. Hence B is a bi-ideal
of Z~.

Define p: .S — [0,1] by

2
€Tr) =
p(z) {07
For any ¢ € [0,1], u = {2S}, since {2S} is a bi-ideal in Z™,

1 1s the bi-ideal in Z~ for all £. Hence p is a fuzzy bi-ideal
of Z™.

if x € 28
otherwise

Lemma 3.5. Let i be a fuzzy subset of S. If p is a fuzzy left
ideal, fuzzy right ideal and lateral ideal of ternary semiring of
S, then p is a fuzzy quasi-ideal of S.

Proof: Let p be a fuzzy left ideal, fuzzy right ideal and
fuzzy lateral ideal of S.Let x = as1s2 = s1(b1 + s1¢82)$2 =
$182d where a, b, c,d, 51,82 € S.

Consider (1SS N (SuS + SSuSS) N SSy)(x)

- min{(uSS)(aﬁ), (SuS + SSuSS)(z), (SS,u)(:E)}

{u(d), ple)},

sup
Z=51(b+31C52>32

—min{ sup {u(a)},

r=as1S2

sup {p(d)}

xr=5182d

sup
z=s51(b+s1cs2)s2

< min{l, {u(sl(b—i-slcsz)sQ)},l}

(as p is a fuzzy left, fuzzy right and fuzzy lateral ideal,
16+ sies2)sz = min{u(®), ()}

= u(b) if p(b) < p(c), (= p(c) if p(b) > p(c))) we get,
(1SS N (SuS + SSuSS) NSSp)(x) < p(x)

We remark that if 2 is not expressed as x = as182 = s1(b1 +
$1€82)82 = $182d, then

(4SS N (SuS + SSuSS) NSSu)(x) = 0 < u(w).
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Thus,
(4SS N (SuS + SSuSS) NSSp) (x) < u(x).

Hence p is a fuzzy quasi-ideal of S. [ |
Lemma 3.6. For any non-empty subsets A, B and C of S,

(1) fafefc = fasc
(2) fanfe N fo = fanBne
(3) fa+ fB = fatm
Proof: Proof is straight forward. |
Lemma 3.7. Let () be an additive subsemigroup of S.
(1) Q@ is a quasi-ideal of S if and only if fq is a
fuzzy quasi-ideal of S.
(2) Q is a bi-ideal of S if and only if fg is a fuzzy
bi-ideal of S.
Proof: Proof of (1) can seen in [8].
Proof of (2) Assume that ) is a bi-ideal of S. Then fg is a
fuzzy ternary subsemiring of S.

fofsfafsfo < fasagsq < fo

This means that fg is a fuzzy bi-ideal of S.
Conversely, let us assume that fq is a fuzzy bi-ideal of S. Let
x be any element of QSQSQ. Then, we have

fo(z) > (fofsfafsfQ)(x) = fosqsq(z) =1

Thus z € @ and QSQSQ C Q. Hence @ is a bi-ideal of S.
|
Lemma 3.8. Any fuzzy quasi-ideal of S is a fuzzy bi-ideal of
S.
Proof: Let u be any fuzzy quasi-ideal of S. Then, we
have

pSpSp € p1(SSS)S C pSS,
pSpuSp € S(SSS)i € SSp,
uSpSy C SSuSS and taking {0} C SuS

so, uSuSp C SuS + SSuSS
we have, uSuSu C uSS N (SuS + SSuSS) NSSu C

Hence, p is a fuzzy bi-ideal of S. ]
Remark 3.9. The converse of Lemma 3.8 does not hold, in
general, that is, a fuzzy bi-ideal of a ternary semiring S may
not be a fuzzy quasi-ideal of S.

Theorem 3.10. Let 4 be a fuzzy subset of S. If u is a fuzzy
left, fuzzy right and lateral ideal of ternary semiring of .S, then
1 is a fuzzy bi-ideal of S.

Proof: As p is fuzzy left, right, lateral ideal of S and
Lemma 3.5, u is a fuzzy quasi-ideal of S. Hence by Lemma
3.8, p is a fuzzy bi-ideal of S. |
Theorem 3.11.[6] Let p be a fuzzy subset of S. Then p is
a fuzzy quasi-ideal of S, if and only if p; is a quasi-ideal of
S, for all t € Im(p).

Theorem 3.12. Let i be a fuzzy subset of S. Then p is a
fuzzy bi-ideal of .S, if and only if y;, is a bi-ideal of S, for all
te Im(u).

Proof: Let u be a fuzzy bi-ideal of S. Let t € Im(pu).
Suppose z,y, z € S such that z,y, z € pu;.Then

w() >t puy) >t u(z) >t
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, and
min{p(z), n(y), u(z)} = t.

As p is a fuzzy bi-ideal, pu(x —y) > t and thus z —y € p. Let
u € S. Suppose u € 1+Su+Sp:. Then there exist x,y, z € uy
and s1, $2, € S such that © = xs1ys2z. Then,

(uSuSp)(u) = p(ws1ys22)

> min{p(z), p(y), p(z)} > min{t, t,t} =t

Therefore, (uSuSu)(u) > t. As p is a bi-ideal of S, u(u) >t
implies v € p;. Hence py is a bi-ideal of S.

Conversely, let us assume that ;14 is a bi-ideal of S, ¢t €
Im(u).Let p € S. Consider

(4SpSp)(p) = sup {mm{u(x),u(y), M(Z)}}
P=xS1YsS2z

Let pu(z) = t1 < p(y) =ta < p(2) = t3. Then, pig, 2 pe, 2
tiy. Thus x,y, 2 € g, and p = xs1ysez € g, S, S, S
e, - This implies p(p) > t1 and hence uSpSy < p. Therefore,
1 is a fuzzy bi-ideal of S. |
Definition 3.13 Let S and 7" be two ternary semirings. Let f
be a mapping which maps from S into 7. Then f is called a
homomorphism of S into 7" if

(i) f(a+b) = f(a) + f(b) and

(ii) f(abc) = f(a)f(b)f(c) for all a,b,c € S
Theorem 3.14. If ) is a fuzzy bi-ideal of a ternary semiring
S and p is a fuzzy ternary subsemiring of S, then (A N p) is
a fuzzy bi-ideal of S.

Proof: Let A be a fuzzy bi-ideal and pu be a fuzzy
ternary subsemiring of S. Clearly (A N p) is a fuzzy ternary
subsemiring of S. Next we prove that (AN ) is a fuzzy bi-
ideal of ternary semiring S. Let t € S and s1, $2,x,y,2 € S
such that t = xs1ys22.

Consider

(AN wWSAN @SN w))(t)

{min{(z\ N p)(),S(s1), (AN w)(y),S(s2),

= sup
t=xs1ys2z

(AN ()}
{min{(x 0 p)(@), AN (), (AN )=}

Let min{(ANp)(z), ANw)(y), (ANp)(z)} = t. This implies
that (A Np)(x) >t ANwp)(y) > tand (AN wp)(z) > t.
Then z,y,z € (At N ). As A is the fuzzy bi-ideal and p is
the fuzzy ternary subsemiring, (A: N p¢) is a bi-ideal of S.
Hence, xs1ys2z € (A+ N pt). This implies

= sup
t=xs1ys2z

AN p)(xsiysez) >t

= min{(AN W) (@), AN W) (y), (AN p)(2)}-
Thus,

min{ (A0 ) (2), (AN p)(y), (AN p)(2)}

< (AN p)(xs1ysaz)
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This shows that

sup — min{ (AN p)(x), (AN p)(y), AN p)(2)}

t=xs51Ys22
< (AN p)(zs1yss2)

Thus, we have

(AN SO N SN @) (B) < (AN p)(H)

Hence,
(AN wSANE)SAN ) < (AN p)

and (A N ) is a fuzzy ideal of S. ]

IV. REGULAR TERNARY SEMIRING

A ternary semiring S is called regular if for every a € S,
there exists an = in S such that aza = a. Lemma 4.1. A
ternary semiring S is regular if and only if

pxyxA=pNyNA

for every fuzzy right ideal u, fuzzy left ideal A\ and fuzzy
lateral ideal vy of S.

Proof: Straight forward from Theorem 5.1 in [5] [ |
Theorem 4.2. For a ternary semiring S, the following condi-
tions are equivalent:

(1) S is regular

(2) o= p*S*pu*Sx*pu, for every fuzzy bi-ideal p
of S.

(3) = pu*S*puxSxpu, for every fuzzy quasi-ideal
wof S

Proof: (1)=(2) First assume that (1) holds. Let u be
any fuzzy bi-ideal of S, and a any element of S. Then
since S is regular, there exists an element x in S such that
a = aza(= azaza). Then we have

(xS px S+ p)(a)

= supmin  {p(;), (S pxS)(yi), (1) (zi)}

a:Zfini,tg TiYiZi
> min{p(a), (S * px S)(zax), (n)(a)}

= min{u(a)7 sup [min{S(p:), u(q:),

WW:Z‘”””E DPiqiTi

St} ula)}
> min{ p(a), min{S(), p(a), S(x)}, u(a) |

= min{p(a), min{1, p(a), 1}, p(a) }= p(a),

and so p* S % g .S*p C p. Since p is a fuzzy bi-ideal of S,
the converse inclusion holds. Thus we have p*xS#*u+xS*xu =

(2)=-(3) Since any fuzzy quasi-ideal of S is a fuzzy bi-ideal
of S by Lemma 3.8.

(3)=(1) Assume (3) holds. Let () be any quasi-ideal of S,
and a any element of (). Then it follows from Lemma 3.7 (1)
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that the characteristic function fq is a quasi-ideal of S.Then
we have

fasqsq(a) = (fo * fs * fo * fs * fg)(a) = fq(a) =1

and so0, @ € QSQSQ. Thus Q C QSQSQ. On the other hand,
Q is a quasi-ideal of S

QSQSQ C (QSSNSYSNSSQ)
QSQSQ C (QSSNSSQRSS NSSQ)
then,
QSQSQ C (RSSN(SQS + 55QSS)NSSQ) CQ

and so we have QSQSQ = @ and hence, by [5, Theorem
3.4], S is a regular ternary semiring.
|
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