Multiplicative Functional on Upper Triangular Fuzzy Matrices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Multiplicative Functional on Upper Triangular Fuzzy Matrices

Authors: Liu Ping

Abstract:

In this paper, for an arbitrary multiplicative functional f from the set of all upper triangular fuzzy matrices to the fuzzy algebra, we prove that there exist a multiplicative functional F and a functional G from the fuzzy algebra to the fuzzy algebra such that the image of an upper triangular fuzzy matrix under f can be represented as the product of all the images of its main diagonal elements under F and other elements under G.

Keywords: Multiplicative functional, triangular fuzzy matrix, fuzzy addition operation, fuzzy multiplication operation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338552

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196

References:


[1] L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, 1965, pp. 338-353.
[2] M. G. Thomason, “Convergence of powers of a fuzzy matrix”, J. Math Anal. Appl., vol. 57, 1977, pp. 476-480.
[3] H. Hashimoto, “Convergence of powers of a fuzzy transitive matrix”, Fuzzy Sets and Systems, vol. 9, 1983, pp.153-160.
[4] A. Kandel, Fuzzy mathematical Techniques with Applications, Addison- Wesley, Tokyo, 1986, pp. 113-139.
[5] W. Kolodziejczyk, “Convergence of powers of s-transitive fuzzy matrices”, Fuzzy Sets and Systems, vol. 26, 1988, pp. 127-130.
[6] K. H. Kim and F. W. Roush, “Generalised fuzzy matrices”, Fuzzy Sets and Systems, vol. 4, 1980, pp. 293-315.
[7] M. Z. Ragab and E. G. Emam, “The Determinant and Adjoint of a Square Fuzzy Matrix”, Information Sciences, vol. 84, 1995, pp. 209-220.
[8] A. K. Shymal and M. Pal, “Triangular fuzzy matrices”, Iranian Journal of Fuzzy Systems, vol. 4, 2007, pp. 75-87.
[9] J. B. Kim, “Determinant theory for fuzzy and boolean matrices”, Congressus Numerantium, 1988, pp. 273-276.
[10] J.B. Kim, “Determinant theory for fuzzy matrices”, Fuzzy Sets and Systems, vol. 29, 1989, pp. 349-356.
[11] M. Z. Ragab and E. G. Emam, “The determinant and adjoint of a square fuzzy matrix”, Fuzzy Sets and Systems, vol. 61, 1994, pp. 297-307.
[12] R. Hemasinha, N.R. Pal and J. C. Bezdek, “The determinant of a fuzzy matrix with respect to t and co-t norms”, Fuzzy Sets and Systems, vol. 87, 1997, pp. 297-306.