Hutchinson-Barnsley Operator in Intuitionistic Fuzzy Metric Spaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Hutchinson-Barnsley Operator in Intuitionistic Fuzzy Metric Spaces

Authors: R. Uthayakumar, D. Easwaramoorthy

Abstract:

The main purpose of this paper is to prove the intuitionistic fuzzy contraction properties of the Hutchinson-Barnsley operator on the intuitionistic fuzzy hyperspace with respect to the Hausdorff intuitionistic fuzzy metrics. Also we discuss about the relationships between the Hausdorff intuitionistic fuzzy metrics on the intuitionistic fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces to the intuitionistic fuzzy metric spaces.

Keywords: Contraction, Iterated Function System, Hutchinson- Barnsley Operator, Intuitionistic Fuzzy Metric Space, Hausdorff Intuitionistic Fuzzy Metric.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335332

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596

References:


[1] L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338–353.
[2] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric Spaces, Kybernetika, 11(5) (1975) 336–344.
[3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994) 395–399.
[4] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997) 365–368.
[5] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002) 245–252.
[6] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004) 1039–1046.
[7] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 29 (2006) 1073–1078.
[8] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 34 (2007) 1689–1695.
[9] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983.
[10] J.E. Hutchinson, Fractals and self similarity, Indiana University Mathematics Journal, 30 (1981) 713–747.
[11] M. Barnsley, Fractals Everywhere, 2nd ed., Academic Press, USA, 1993.
[12] M. Barnsley, Super Fractals, Cambridge University Press, New York, 2006.
[13] D. Easwaramoorthy and R. Uthayakumar, Analysis on Fractals in Fuzzy Metric Spaces, Fractals, 19(3) (2011) 379–386.
[14] R. Uthayakumar and D. Easwaramoorthy, Hutchinson-Barnsley Operator in Fuzzy Metric Spaces, International Journal of Engineering and Natural Sciences, 5(4) (2011) 203–207.
[15] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10 (1960) 313–334.
[16] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 28 (2006) 902–905.
[17] J. Rodriguez-Lopez and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004) 273–283.