A Study on Intuitionistic Fuzzy h-ideal in Γ-Hemirings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A Study on Intuitionistic Fuzzy h-ideal in Γ-Hemirings

Authors: S.K. Sardar, D. Mandal, R. Mukherjee

Abstract:

The notions of intuitionistic fuzzy h-ideal and normal intuitionistic fuzzy h-ideal in Γ-hemiring are introduced and some of the basic properties of these ideals are investigated. Cartesian product of intuitionistic fuzzy h-ideals is also defined. Finally a characterization of intuitionistic fuzzy h-ideals in terms of fuzzy relations is obtained.

Keywords: Γ-hemiring, fuzzy h-ideal, normal, cartesian product.Mathematics Subject Classification[2000] :08A72, 16Y99

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055072

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4281

References:


[1] K.T. Atanassov; Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1983), 87-96.
[2] W.A. Dudek; Intuitionistic fuzzy h-ideals of hemirings, Proc. of the 5th WSEAS Int. Conf. on Non-Linear Analysis, Non-Linear Systems and Chaos, Bucharest, Romania, Oct. 16-18, 2006.
[3] W.A. Dudek; Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft. Comput. (2008), 12, 359-364.
[4] T.K. Dutta, S.K. Sardar; On matrix Γ-semirings, Far East J. Math. Sci., FJMS, 7, No. 1 (2002), 17-31.
[5] T.K. Dutta, S.K. Sardar; On operator semiring of a Γ-semiring, Southest Asian Bull. of Mathematics, Springer-Verlag, 26 (2002), 203-213.
[6] J.S. Golan; Semirings and their Applications, Kluwer Academic Publishers (1999).
[7] M. Henriksen; Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6, (1958), p. 321.
[8] K. Izuka, On the Jacobson radical of a semiring, Tohuku Math. J. 11(2), (1959), 409-421.
[9] Y.B. Jun, C.Y. Lee; Fuzzy Γ-rings, Pusom Kyongnam Math. J., 8, No. 2(1992), 63-170.
[10] Y.B. Jun, M.A. Öztürk and S.Z. Song; On fuzzy h-ideals in hemirings, Information Sci., 162, (2004), 211-226.
[11] D.R. La Torre; On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12, (1965), 329-336.
[12] M.M.K. Rao, Γ-semirings 1, Southeast Asian Bull. of Math., 19 (1995),49-54.
[13] S.K. Sardar, D. Mandal; Fuzzy h-ideal in Γ-hemiring, International Journal of Pure and Applied Mathematics, Volume 56 No. 3 2009, 439- 450
[14] L.A. Zadeh; Fuzzy Sets, Information and Control, 8 (1965), 338-353.