Search results for: Finite Element Method (FEM)
9040 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method
Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi
Abstract:
Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micromechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.Keywords: 3D orthogonal woven composite, Aerospace applications, Finite element method, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30599039 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10759038 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis
Authors: Khaled S. Ragab
Abstract:
This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.
Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42569037 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes
Authors: Dylan M. Copeland
Abstract:
We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.
Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17259036 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity
Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike
Abstract:
In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new finite element method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.
Keywords: Simulation, FEM, air viscosity, slit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16319035 Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model
Authors: Md Rashadul Islam, Mesbah U. Ahmed, Rafiqul A. Tarefder
Abstract:
This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.
Keywords: Falling weight deflectometer test, Finite element model, Flexible pavement, moduli, surface deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28149034 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method
Authors: N. Outili, A-H. Meniai
Abstract:
Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16909033 Electric Field Investigation in MV PILC Cables with Void Defect
Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou
Abstract:
Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.
Keywords: MV PILC cables, Finite Element Method /COMSOL Multiphysics, Electric Field Stress, Partial Discharge Degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35819032 Design of Synchronous Torque Couplers
Authors: M. H. Nagrial, J. Rizk, A. Hellany
Abstract:
This paper presents the design, analysis and development of permanent magnet (PM) torque couplers. These couplers employ rare-earth magnets. Based on finite element analysis and earlier analytical works both concentric and face-type synchronous type couplers have been designed and fabricated. The experimental performance has good correlation with finite element calculations.Keywords: Finite Element Analysis, Synchronous TorqueCouplers, Permanent Magnet Torque Couplers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30519031 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer
Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski
Abstract:
Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.
Keywords: Navier-Stokes, FEM, condensers, steam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22669030 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19779029 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency
Authors: Hamed Jamshidi, Pooya Djamshidi
Abstract:
In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24909028 Free Vibration Analysis of Carbon Nanotube Reinforced Laminated Composite Panels
Authors: B. Ramgopal Reddy, K. Ramji, B. Satyanarayana
Abstract:
In this paper, free vibration analysis of carbon nanotube (CNT) reinforced laminated composite panels is presented. Three types of panels such as flat, concave and convex are considered for study. Numerical simulation is carried out using commercially available finite element analysis software ANSYS. Numerical homogenization is employed to calculate the effective elastic properties of randomly distributed carbon nanotube reinforced composites. To verify the accuracy of the finite element method, comparisons are made with existing results available in the literature for conventional laminated composite panels and good agreements are obtained. The results of the CNT reinforced composite materials are compared with conventional composite materials under different boundary conditions.
Keywords: CNT Reinforced Composite Panels, Effective ElasticProperties, Finite Element Method, Natural Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30049027 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.
Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25649026 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.
Keywords: Computer Aided Engineering, CAE, containment analysis, Finite Element Analysis, FEA, impact analysis, penetration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5399025 Analysis of the Effect of HV Transmission Lines on the Control Room and its Proposed Shielding
Authors: Diako Azizi, Hosein Heydari, Ahmad Gholami
Abstract:
Today with the rapid growth of telecommunications equipment, electronic and developing more and more networks of power, influence of electromagnetic waves on one another has become hot topic discussions. So in this article, this issue and appropriate mechanisms for EMC operations have been presented. First, impact of high voltage lines on the surrounding environment especially on the control room has been investigated, then to reduce electromagnetic radiation, various methods of shielding are provided and shielding effectiveness of them has been compared. It should be expressed that simulations have been done by the finite element method (FEM).
Keywords: Electrical field, EMC, field distribution, finite element method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14089024 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model
Authors: Isa Ahmadi, Ramin Khamedi
Abstract:
In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.
Keywords: Cyclic Loading, Finite Element Analysis, Prager Kinematic Hardening Model, Torsion of shaft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27409023 Topology Optimization of Aircraft Fuselage Structure
Authors: Muniyasamy Kalanchiam, Baskar Mannai
Abstract:
Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40949022 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator
Authors: M. Pala Prasad Reddy, Jeevamma Jacob
Abstract:
Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.
Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29159021 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis
Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying
Abstract:
Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.
Keywords: Random vibration, finite element simulation, fatigue, frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47089020 Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects
Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding
Abstract:
Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.Keywords: Nanomaterials, finite element method, sizedependency, surface stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27829019 MDA of Hexagonal Honeycomb Plates used for Space Applications
Authors: A. Boudjemai , M.H. Bouanane, Mankour, R. Amri, H. Salem, B. Chouchaoui
Abstract:
The purpose of this paper is to perform a multidisciplinary design and analysis (MDA) of honeycomb panels used in the satellites structural design. All the analysis is based on clamped-free boundary conditions. In the present work, detailed finite element models for honeycomb panels are developed and analysed. Experimental tests were carried out on a honeycomb specimen of which the goal is to compare the previous modal analysis made by the finite element method as well as the existing equivalent approaches. The obtained results show a good agreement between the finite element analysis, equivalent and tests results; the difference in the first two frequencies is less than 4% and less than 10% for the third frequency. The results of the equivalent model presented in this analysis are obtained with a good accuracy. Moreover, investigations carried out in this research relate to the honeycomb plate modal analysis under several aspects including the structural geometrical variation by studying the various influences of the dimension parameters on the modal frequency, the variation of core and skin material of the honeycomb. The various results obtained in this paper are promising and show that the geometry parameters and the type of material have an effect on the value of the honeycomb plate modal frequency.
Keywords: Satellite, honeycomb, finite element method, modal frequency, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41049018 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology
Authors: Richard Ji
Abstract:
Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.
Keywords: Nondestructive testing, Pavement moduli backcalculation, Finite Element Method, FEM, concrete pavements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8019017 Settlement Analysis of Axially Loaded Bored Piles: A Case History
Authors: M. Mert, M. T. Ozkan
Abstract:
Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined. Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.
Keywords: Failure, finite element method, monitoring and instrumentation, pile, settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9809016 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process
Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan
Abstract:
Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.
Keywords: Welding, thin plate, buckling distortion, fixture locators, finite element modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24109015 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants
Authors: Dong Wook Lee
Abstract:
This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7039014 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12809013 Research of the Behavior of Solar Module Frame Installed by Solar Clamping System by Finite Element Method
Authors: Li-Chung Su, Chia-Yu Chen, Tzu-Yuan Lai, Sheng-Jye Hwang
Abstract:
Mechanical design of the thin-film solar framed module and mounting system is important to enhance module reliability and to increase areas of applications. The stress induced by different mounting positions played a main role controlling the stability of the whole mechanical structure. From the finite element method, under the pressure from the back of module, the stress at Lc (center point of the Long frame) increased and the stresses at Center, Corner and Sc (center point of the Short frame) decreased while the mounting position was away from the center of the module. In addition, not only the stress of the glass but also the stress of the frame decreased. Accordingly it was safer to mount in the position away from the center of the module. The emphasis of designing frame system of the module was on the upper support of the Short frame. Strength of the overall structure and design of the corner were also important due to the complexity of the stress in the Long frame.Keywords: Finite element method, Framed module, Mountingposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17109012 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16859011 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase
Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan
Abstract:
This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.Keywords: Delamination, lamb wave, finite element method, EMD, instantaneous phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725