Search results for: Features extraction parameters
5592 Experimental Study of the Extraction of Copper(II) from Sulphuric Acid by Means of Sodium Diethyldithiocarbamate (SDDT)
Authors: S.Touati, A.H. Meniai
Abstract:
The present work presents the extraction of copper(II) from sulphuric acid solutions with Sodium diethyldithiocarbamate (SDDT), and six different organic diluents: Dichloromethane, Chloroform, Carbon tetrachloride, Toluene, xylene and Cyclohexane, were tested. The pair SDDT/Chloroform showed to be the most selective in removing the copper cations, and hence was considered throughout the experimental study. The effects of operating parameters such as the initial concentration of the extracting agent, the agitation time, the agitation speed and the acid concentration were considered. For an initial concentration of Cu (II) of 63 ppm in a 0.5 M sulphuric acid solution, both with a mass of the extracting agent of 20 mg, an extraction percentage of about 97.8 % and a distribution coefficient of 44.42 were obtained, respectively, confirming the performance of the SDDT-Chloroform pair.Keywords: Copper (II), Distribution coefficient, Extraction, SDDT, Sulphuric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18375591 Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)
Authors: Noor A. Draman, Campbell Wilson, Sea Ling
Abstract:
Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.
Keywords: Bio-inspired audio content-based retrieval framework, features selection technique, low/high level features, artificial immune system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15945590 Extraction Condition of Phaseolus vulgaris
Authors: Ratchadaporn Oonsivilai, Jutarat Manatwiyangkool, Anant Oonsivilai
Abstract:
Theoptimal extraction condition of dried Phaseolus vulgaris powderwas studied. The three independent variables are raw material concentration, shaking and centrifugaltime. The dependent variables are both yield percentage of crude extract and alphaamylase enzyme inhibition activity. The experimental design was based on box-behnkendesign. Highest yield percentage of crude extract could get from extraction condition at concentration of 1, 0,1, concentration of 0.15 M ,extraction time for 2hour, and separationtime for60 min. Moreover, the crude extract with highest alpha-amylase enzyme inhibition activityoccurred by extraction condition at concentration of 0.10 M, extraction time for 2 min, and separation time for 45 minKeywords: Extraction time, Optimal condition, Alpha-amylase enzymeinhibition activity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25465589 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System
Authors: Shahram Mohammadi, Ali Frajzadeh
Abstract:
A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.
Keywords: Matching, Minutiae, Reference point, Reference orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24145588 A New Method for Rapid DNA Extraction from Artemia (Branchiopoda, Crustacea)
Authors: R. Manaffar, R. Maleki, S. Zare, N. Agh, S. Soltanian, B. Sehatnia, P. Sorgeloos, P. Bossier, G. Van Stappen
Abstract:
Artemia is one of the most conspicuous invertebrates associated with aquaculture. It can be considered as a model organism, offering numerous advantages for comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is an important step of any molecular experiment, a new and a rapid method of DNA extraction from adult Artemia was described in this study. Besides, the efficiency of this technique was compared with two widely used alternative techniques, namely Chelex® 100 resin and SDS-chloroform methods. Data analysis revealed that the new method is the easiest and the most cost effective method among the other methods which allows a quick and efficient extraction of DNA from the adult animal.Keywords: APD, Artemia, DNA extraction, Molecularexperiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31935587 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5225586 Optimization for Subcritical Water Extraction of Phenolic Compounds from Rambutan Peels
Authors: Nuttawan Yoswathana, M. N. Eshtiaghi
Abstract:
Rambutan is a tropical fruit which peel possesses antioxidant properties. This work was conducted to optimize extraction conditions of phenolic compounds from rambutan peel. Response surface methodology (RSM) was adopted to optimize subcritical water extraction (SWE) on temperature, extraction time and percent solvent mixture. The results demonstrated that the optimum conditions for SWE were as follows: temperature 160°C, extraction time 20min. and concentration of 50% ethanol. Comparison of the phenolic compounds from the rambutan peels in maceration 6h, soxhlet 4h, and SWE 20min., it indicated that total phenolic content (using Folin-Ciocalteu-s phenol reagent) was 26.42, 70.29, and 172.47mg of tannic acid equivalent (TAE) per g dry rambutan peel, respectively. The comparative study concluded that SWE was a promising technique for phenolic compounds extraction from rambutan peel, due to much more two times of conventional techniques and shorter extraction times.
Keywords: Subcritical water extraction, Rambutan peel, phenolic compounds, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36545585 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks
Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.
Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22985584 Extraction of Significant Phrases from Text
Authors: Yuan J. Lui
Abstract:
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.
Keywords: classification, keyphrase extraction, machine learning, summarization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20515583 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17375582 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification
Authors: Ramaswamy Palaniappan, Nai-Jen Huan
Abstract:
Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18035581 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features
Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk
Abstract:
The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18735580 Optimization and Kinetic Study of Gaharu Oil Extraction
Authors: Muhammad Hazwan H., Azlina M.F., Hasfalina C.M., Zurina Z.A., Hishamuddin J
Abstract:
Gaharu that produced by Aquilaria spp. is classified as one of the most valuable forest products traded internationally as it is very resinous, fragrant and highly valuable heartwood. Gaharu has been widely used in aromatheraphy, medicine, perfume and religious practices. This work aimed to determine the factors affecting solid liquid extraction of gaharu oil using hexane as solvent under experimental condition. The kinetics of extraction was assumed and verified based on a second-order mechanism. The effect of three main factors, which were temperature, reaction time and solvent to solid ratio were investigated to achieve maximum oil yield. The optimum condition were found at temperature 65°C, 9 hours reaction time and solvent to solid ratio of 12:1 with 14.5% oil yield. The kinetics experimental data agrees and well fitted with the second order extraction model. The initial extraction rate (h) was 0.0115 gmL-1min-1; the extraction capacity (Cs) was 1.282gmL-1; the second order extraction constant (k) was 0.007 mLg-1min-1 and coefficient of determination, R2 was 0.945.Keywords: Gaharu, solid liquid extraction, optimization, kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32645579 Improved Feature Processing for Iris Biometric Authentication System
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21415578 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics
Authors: Bharathi P. T, P. Subashini
Abstract:
Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.
Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29095577 Ultrasound Assisted Extraction and Microwave Assisted Extraction of Carotenoids from Melon Shells
Authors: A. Brinda Lakshmi, J. Lakshmi Priya
Abstract:
Cantaloupes (muskmelon and watermelon) contain biologically active molecules such as carotenoids which are natural pigments used as food colorants and afford health benefits. ß-carotene is the major source of carotenoids present in muskmelon and watermelon shell. Carotenoids were extracted using Microwave assisted extraction (MAE) and Ultrasound assisted extraction (UAE) utilising organic lipophilic solvents such as acetone, methanol, and hexane. Extraction conditions feed-solvent ratio, microwave power, ultrasound frequency, temperature and particle size were varied and optimized. It was found that the yield of carotenoids was higher using UAE than MAE, and muskmelon had the highest yield of carotenoids when was ethanol used as a solvent for 0.5 mm particle size.Keywords: Carotenoids, extraction, muskmelon shell, watermelon shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9805576 Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran
Authors: Peiman Ariaii, Hamid Tavakolipour, Mohsen Pirdashti, Rabehe Izadi Amoli
Abstract:
Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.Keywords: Raisin concentrate, optimization, process parameters, round raisin, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16005575 Predicting Protein Function using Decision Tree
Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur
Abstract:
The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.Keywords: Sequence Derived Features, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19525574 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R color component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.
Keywords: Chromaticity, Feature Extraction, Remote Sensing, Spectral library, Water Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33705573 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature and time of extraction of each stage, agitation speed and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.
Keywords: Zinc extraction, Efficiency, Neural networks, Operating condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15895572 Extraction and Characterization of Oil from Avocado Peels
Authors: Tafere Aga Bullo
Abstract:
The peels of avocados, like other fruit peels, are commonly discarded, not knowing their potential use. This study carried out to extract oils from avocado peels and to characterize the extracted oils with the view to determine their suitability for consumption and other uses. Soxhlet apparatus was used for extraction using n-hexane as a solvent, which is chosen based on the fact that it has a very low value of toxicity and a great extraction rate. The proximate analysis and physicochemical properties of the extracted oil were investigated. The percentage yield of oil extracted from the peel was found to be 40.6%. From this study, the optimum operating conditions for the extraction of oil from avocado peel oil for the particle size of 2.6 mm, solvent type N-hexane and extraction time of 3-5 hr. were considered. A general factorial design was applied to investigate the effect of process variables on oil yield. Maximum oil yield of 40.6% was obtained at an extraction time of 5 hr. The extracted avocado peel oil can be widely used in pharmaceutical and energy production.
Keywords: Avocado fruits, avocado oil, avocado peel oil, characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9445571 Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing
Authors: Dewi S. Fardhyanti, Panut Mulyono, Wahyudi B. Sediawan, Muslikhin Hidayat
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.Keywords: Coal tar, Distribution coefficient, Extraction, Yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45305570 Thermodynamic Study of Uranium Extraction from Tunisian Wet Process Phosphoric Acid
Authors: N. Khleifia, A. Hannachi, N. Abbes
Abstract:
In the present paper, an experimental investigation was conducted to study the thermodynamic of uranium extraction from Tunisian wet phosphoric acid using the synergistic solvent mixture of di-2-ethylhexyl phosphoric acid (DEHPA) and trioctyl phosphine oxid (TOPO) diluted in kerosene. The effect of different factors affecting the extraction process (temperature, TOPO and DEHPA concentrations) has been investigated. The obtained data of temperature effect on the extraction showed that the enthalpy change is -35.8 kJ.mol-1. The slope analysis method was used for determining the stoichiometry of the extracted species.
Keywords: DEHPA-TOPO, extraction, phosphoric acid, stoichiometry, uranium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24365569 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14895568 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics
Authors: N. B. Mahesh Kumar, K. Premalatha
Abstract:
The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.
Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27595567 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets
Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T
Abstract:
Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.
Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28415566 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.
Keywords: Local features modelling, face recognition system, Gaussian mixture models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22555565 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram
Authors: S. Shanthi, V. Muralibhaskaran
Abstract:
Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.
Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29465564 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites
Authors: S. I. Abu Alasal, M. M. Esbeih, E. R. Fayyad, R. S. Gharaibeh, M. Z. Ali, A. A. Freewan, M. M. Jamhawi
Abstract:
This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.
Keywords: Meshes, Point Clouds, Surface Reconstruction Protocols, 3D Reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20045563 Reliable Face Alignment Using Two-Stage AAM
Authors: Sunho Ki, Daehwan Kim, Seongwon Cho, Sun-Tae Chung, Jaemin Kim, Yun-Kwang Hong, Chang Joon Park, Dongmin Kwon, Minhee Kang, Yusung Kim, Younghan Yoon
Abstract:
AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.Keywords: AAM, Face Alignment, Feature Extraction, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477