Search results for: Anaerobic microorganism identification
997 Light Tracking Fault Tolerant Control System
Authors: J. Florescu, T. Vinay, L. Wang
Abstract:
A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411996 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller
Authors: O.M. Mohamed vall, M. Radhi
Abstract:
This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.
Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444995 Vibration Base Identification of Impact Force Using Genetic Algorithm
Authors: R. Hashemi, M.H.Kargarnovin
Abstract:
This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562994 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven
Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey
Abstract:
The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.
Keywords: Genus Geobacillus, NADPH/NADH-dependent reductase, Selenium nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312993 Comparative Performance and Microbial Community of Single-phase and Two-phase Anaerobic Systems Co-Digesting Cassava Pulpand Pig Manure
Authors: P. Panichnumsin, B. K. Ahring, A. Nopharatana, P. Chaipresert
Abstract:
In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, while those of singlephase CSTR were 59 ± 1% and 1670 ± 60 ml l-1 d-1, respectively. Codigestion in two-phase CSTR gave higher 12% solid degradation and 25% methane production than single-phase CSTR. Phylogenetic analysis of 16S rDNA clone library revealed that the Bacteroidetes were the most abundant group, followed by the Clostridia in singlephase CSTR. In hydrolysis/acidification reactor of two-phase system, the bacteria within the phylum Firmicutes, especially Clostridium, Eubacteriaceae and Lactobacillus were the dominant phylogenetic groups. Among the Archaea, Methanosaeta sp. was the exclusive predominant in both digesters while the relative abundance of Methanosaeta sp. and Methanospirillum hungatei differed between the two systems.Keywords: Anaerobic co-digestion, Cassava pulp, Microbialdiversity, Pig manure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904992 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262991 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker
Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar
Abstract:
Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426990 Identification of Individual Objects at the Intelligent Assembly Cell
Authors: Ružarovský, Roman, Danišová, Nina, Velíšek, Karol
Abstract:
In this contribution is presented a complex design of individual objects identification in the workplace of intelligent assembly cell. Intelligent assembly cell is situated at Institute of Manufacturing Systems and Applied Mechanics and is used for pneumatic actuator assembly. Pneumatic actuator components are pneumatic roller, cover, piston and spring. Two identification objects alternatives for assembly are designed in the workplace of industrial robot. In the contribution is evaluated and selected suitable alternative for identification – 2D codes reader. The complex design of individual object identification is going out of intelligent manufacturing systems knowledge. Intelligent assembly and manufacturing systems as systems of new generation are gradually loaded in to the mechanical production, when they are removeing human operation out of production process and they also short production times.Keywords: system, cell, intelligent, mechanics, device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451989 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.
Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145988 Finite Element and Subspace Identification Approaches to Model Development of a Smart Acoustic Box with Experimental Verification
Authors: Tamara Nestorović, Jean Lefèvre, Stefan Ringwelski, Ulrich Gabbert
Abstract:
Two approaches for model development of a smart acoustic box are suggested in this paper: the finite element (FE) approach and the subspace identification. Both approaches result in a state-space model, which can be used for obtaining the frequency responses and for the controller design. In order to validate the developed FE model and to perform the subspace identification, an experimental set-up with the acoustic box and dSPACE system was used. Experimentally obtained frequency responses show good agreement with the frequency responses obtained from the FE model and from the identified model.
Keywords: Acoustic box, experimental verification, finite element model, subspace identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566987 System Identification Based on Stepwise Regression for Dynamic Market Representation
Authors: Alexander Efremov
Abstract:
A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.Keywords: market identification, dynamic models, stepwise regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624986 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems; the challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.
Keywords: Biometric databases, Multimodal biometrics, security authentication, Digital watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094985 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment
Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng
Abstract:
Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 ℃, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source.
Keywords: Aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483984 Urban and Rural Children’s Knowledge on Biodiversity in Bizkaia: Tree Identification Skills and Animal and Plant Listing
Authors: Joserra Díez, Ainhoa Meñika, Iñaki Sanz-Azkue, Arritokieta Ortuzar
Abstract:
Biodiversity provides humans with a great range of ecosystemic services; it is therefore an indispensable resource and a legacy to coming generations. However, in the last decades, the increasing exploitation of the Planet has caused a great loss of biodiversity and its acquaintance has decreased remarkably; especially in urbanized areas, due to the decreasing attachment of humans to nature. Yet, the Primary Education curriculum primes the identification of flora and fauna to guarantee the knowledge of children on their surroundings, so that they care for the environment as well as for themselves. In order to produce effective didactic material that meets the needs of both teachers and pupils, it is fundamental to diagnose the current situation. In the present work, the knowledge on biodiversity of 3rd cycle Primary Education students in Biscay (n=98) and its relation to the size of the town/city of their school is discussed. Two tests have been used with such aim: one for tree identification and the other one so that the students enumerated the species of trees and animals they knew. Results reveal that knowledge of students on tree identification is scarce regardless the size of the city/town and of their school. On the other hand, animal species are better known than tree species.Keywords: Biodiversity, population, tree identification, animal identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201983 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.
Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292982 Analyzing Irbid’s Food Waste as Feedstock for Anaerobic Digestion
Authors: Assal E. Haddad
Abstract:
Food waste samples from Irbid were collected from 5 different sources for 12 weeks to characterize their composition in terms of four food categories; rice, meat, fruits and vegetables, and bread. Average food type compositions were 39% rice, 6% meat, 34% fruits and vegetables, and 23% bread. Methane yield was also measured for all food types and was found to be 362, 499, 352, and 375 mL/g VS for rice, meat, fruits and vegetables, and bread, respectively. A representative food waste sample was created to test the actual methane yield and compare it to calculated one. Actual methane yield (414 mL/g VS) was greater than the calculated value (377 mL/g VS) based on food type proportions and their specific methane yield. This study emphasizes the effect of the types of food and their proportions in food waste on the final biogas production. Findings in this study provide representative methane emission factors for Irbid’s food waste, which represent as high as 68% of total Municipal Solid Waste (MSW) in Irbid, and also indicate the energy and economic value within the solid waste stream in Irbid.
Keywords: Food waste, solid waste management, anaerobic digestion, methane yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829981 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes
Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng
Abstract:
Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.
Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132980 Size-Reduction Strategies for Iris Codes
Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl
Abstract:
Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple subsampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two-stage identification approach, using small-sized iris code templates in a pre-selection stage, and full resolution templates for final identification, which shows promising recognition behaviour.
Keywords: Iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789979 Conflicts Identification among Non-functional Requirements using Matrix Maps
Authors: Abdul H, Jamil A, Imran U
Abstract:
Conflicts identification among non-functional requirements is often identified intuitively which impairs conflict analysis practices. This paper proposes a new model to identify conflicts among non-functional requirements. The proposed model uses the matrix mechanism to identify the quality based conflicts among non-functional requirements. The potential conflicts are identified through the mapping of low level conflicting quality attributes to low level functionalities using the matrices. The proposed model achieves the identification of conflicts among product and process requirements, identifies false conflicts, decreases the documentation overhead, and maintains transparency of identified conflicts. The attributes are not concomitantly taken into account by current models in practice.
Keywords: Conflict Identification, Matrix Maps, Non-functional Requirements, Requirements Analysis, Software Engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563978 Genetic Combined with a Simplex Algorithm as an Efficient Method for the Detection of a Depressed Ellipsoidal Flaw using the Boundary Element Method
Authors: Clio G. Vossou, Ioannis N. Koukoulis, Christopher G. Provatidis
Abstract:
The present work encounters the solution of the defect identification problem with the use of an evolutionary algorithm combined with a simplex method. In more details, a Matlab implementation of Genetic Algorithms is combined with a Simplex method in order to lead to the successful identification of the defect. The influence of the location and the orientation of the depressed ellipsoidal flaw was investigated as well as the use of different amount of static data in the cost function. The results were evaluated according to the ability of the simplex method to locate the global optimum in each test case. In this way, a clear impression regarding the performance of the novel combination of the optimization algorithms, and the influence of the geometrical parameters of the flaw in defect identification problems was obtained.
Keywords: Defect identification, genetic algorithms, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294977 Applications of Cascade Correlation Neural Networks for Cipher System Identification
Authors: B. Chandra, P. Paul Varghese
Abstract:
Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.
Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448976 Effects of Microwave Heating on Biogas Production, Chemical Oxygen Demand and Volatile Solids Solubilization of Food Residues
Authors: Ackmez Mudhoo, Pravish Rye Moorateeah, Romeela Mohee
Abstract:
This paper presents the results of the preliminary investigation of microwave (MW) irradiation pretreatments on the anaerobic digestion of food residues using biochemical methane potential (BMP) assays. Low solids systems with a total solids (TS) content ranging from 5.0-10.0% were analyzed. The inoculum to bulk mass of substrates to water ratio was 1:2:2 (mass basis). The experimental conditions for pretreatments were as follows: a control (no MW irradiation), two runs with MW irradiation for 15 and 30 minutes at 320 W, and another two runs with MW irradiation at 528 W for 30 and 60 minutes. The cumulative biogas production were 6.3 L and 8.7 L for 15min/320 W and 30min/320 W MW irradiation conditions, respectively, and 10.5 L and 11.4 L biogas for 30min/528 W and 60min/528 W, respectively, as compared to the control giving 5.8 L biogas. Both an increase in exposure time of irradiation and power of MW had increased the rate and yield of biogas. Singlefactor ANOVA tests (p<0.05) indicated that the variations in VS, TS, COD and cumulative biogas generation were significantly different for the pretreatment conditions. Results from this study indicated that MW irradiation had enhanced the biogas production and degradation of total solids with a significant improvement in VS and COD solubilization.
Keywords: microwave irradiation, pretreatment, anaerobic digestion, food residues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438975 Improved Weighted Matching for Speaker Recognition
Authors: Ozan Mut, Mehmet Göktürk
Abstract:
Matching algorithms have significant importance in speaker recognition. Feature vectors of the unknown utterance are compared to feature vectors of the modeled speakers as a last step in speaker recognition. A similarity score is found for every model in the speaker database. Depending on the type of speaker recognition, these scores are used to determine the author of unknown speech samples. For speaker verification, similarity score is tested against a predefined threshold and either acceptance or rejection result is obtained. In the case of speaker identification, the result depends on whether the identification is open set or closed set. In closed set identification, the model that yields the best similarity score is accepted. In open set identification, the best score is tested against a threshold, so there is one more possible output satisfying the condition that the speaker is not one of the registered speakers in existing database. This paper focuses on closed set speaker identification using a modified version of a well known matching algorithm. The results of new matching algorithm indicated better performance on YOHO international speaker recognition database.Keywords: Automatic Speaker Recognition, Voice Recognition, Pattern Recognition, Digital Audio Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736974 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003973 A Hybrid GMM/SVM System for Text Independent Speaker Identification
Authors: Rafik Djemili, Mouldi Bedda, Hocine Bourouba
Abstract:
This paper proposes a novel approach that combines statistical models and support vector machines. A hybrid scheme which appropriately incorporates the advantages of both the generative and discriminant model paradigms is described and evaluated. Support vector machines (SVMs) are trained to divide the whole speakers' space into small subsets of speakers within a hierarchical tree structure. During testing a speech token is assigned to its corresponding group and evaluation using gaussian mixture models (GMMs) is then processed. Experimental results show that the proposed method can significantly improve the performance of text independent speaker identification task. We report improvements of up to 50% reduction in identification error rate compared to the baseline statistical model.Keywords: Speaker identification, Gaussian mixture model (GMM), support vector machine (SVM), hybrid GMM/SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245972 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.
Keywords: Long-short-term memory, re-identification, security critical application, spatial-temporal awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537971 Qualitative Characteristics of Meat from Lambs Fed Hydrolyzed Sugarcane
Authors: V. Endo, A. G. Silva Sobrinho, F. A. Almeida, N. L. L. Lima, G. M. Manzi, L. G. A. Cirne, N. M. B. L. Zeola
Abstract:
We used 24 Ile de France lambs, weighing between 15 and 32 kg (BW). Treatments were supplemented with concentrate: “in nature” sugarcane (IN), sugarcane hydrolyzed using 0.6% calcium oxide (CaO) under aerobic condition (AER), and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA), constituting a completely randomized design with eight repetitions per treatment. Lambs were housed in individual stalls and fed into the through, allowing 10% of leftovers. Lambs were slaughtered when body weight reached 32 kg. The following parameters were determined on Longissimu lumborum muscle of hot and cold carcasses: pH and color, 45 minutes and 24 hours after slaughtering. Qualitative analysis of the meat were performed in the loins, water-holding capacity (WHC), cooking loss (CL), and shear force (SF). We used a completely randomized design with three treatments and eight repetitions. Means were compared by Tukey test at 5% significance. A higher value for redness (a*) 45 minutes after slaughter (10.48) were found for lambs fed hydrolyzed under anaerobic conditions sugarcane. The other qualitative characteristics of meat were not affected by treatments (P >0.05). The comparison of meat quality resulting from the treatments shows that it is possible to feed in nature sugarcane to lambs, thus waiving hydrolyses process and the spending with alkalizing agent.
Keywords: Calcium oxide, hydrolysis, meat quality, pH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057970 Design of the Production Line Based On RFID through 3D Modeling
Authors: Aliakbar Akbari, Majid Hashemipour, Shiva Mirshahi
Abstract:
Radio-frequency identification has entered as a beneficial means with conforming GS1 standards to provide the best solutions in the manufacturing area. It competes with other automated identification technologies e.g. barcodes and smart cards with regard to high speed scanning, reliability and accuracy as well. The purpose of this study is to improve production line-s performance by implementing RFID system in the manufacturing area on the basis of radio-frequency identification (RFID) system by 3D modeling in the program Cinema 4D R13 which provides obvious graphical scenes for users to portray their applications. Finally, with regard to improving system performance, it shows how RFID appears as a well-suited technology in a comparison of the barcode scanner to handle different kinds of raw materials in the production line base on logical process.
Keywords: Radio Frequency Identification, Manufacturing and Production Lines, 3D modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112969 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940968 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: Cross-validation support vector machine, refined composite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863