Search results for: intelligent drive and control
3459 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition
Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei
Abstract:
Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19473458 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation
Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad
Abstract:
For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.Keywords: Biorobotics, rehabilitation, nonlinear control, robotic assistive device, exoskeleton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17233457 The Robot Hand System that can Control Grasping Power by SEMG
Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani
Abstract:
SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.Keywords: SEMG, multi electrode, robot hand, power control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19243456 A Group Setting of IED in Microgrid Protection Management System
Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu
Abstract:
There are a number of Distributed Generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the Intelligent Electronic Device (IED) and a Supervisory Control and Data Acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a Microgrid Protection Management System (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.Keywords: IEC 61850, IED, Group Setting, Microgrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22683455 The Cognitive Neuroscience of Vigilance – A Test of Temporal Decrement in the Attention Networks Test (ANT)
Authors: M. K. Zholdassova, G. Matthews, A. M. Kustubayeva, S. M. Jakupov
Abstract:
The aim of this study was to test whether the Attention Networks Test (ANT) showed temporal decrements in performance. Vigilance tasks typically show such decrements, which may reflect impairments in executive control resulting from cognitive fatigue. The ANT assesses executive control, as well as alerting and orienting. Thus, it was hypothesized that ANT executive control would deteriorate over time. Manipulations including task condition (trial composition) and masking were included in the experimental design in an attempt to increase performance decrements. However, results showed that there is no temporal decrement on the ANT. The roles of task demands, cognitive fatigue and participant motivation in producing this result are discussed. The ANT may not be an effective tool for investigating temporal decrement in attention.Keywords: ANT, executive control, task engagement, vigilancedecrement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19253454 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.
Keywords: Renewable energies, hybrid systems, optimization, operation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21073453 Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig
Authors: Seong-Mo An, Rohit Ramesh, Young-Sook Lee, Wan-Young Chung
Abstract:
The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.Keywords: Interaxial, Convergence, Stereoscopic, Horizontal 3D Camera Rig
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26463452 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate
Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim
Abstract:
The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.
Keywords: Micro grid, energy storage systems, ramp rate, control strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24703451 Design and Control Algorithms for Power Electronic Converters for EV Applications
Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski
Abstract:
The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.Keywords: Electric Vehicles, Electrical Machines Control, Power Electronics, Powerflow Regulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25033450 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13163449 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index
Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, Chang Kyoo Yoo
Abstract:
This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.
Keywords: Indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17183448 A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems
Authors: Tawiwat V., Phermsak S., Noppasit C.
Abstract:
This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.
Keywords: Under actuator, Dynamic optimal control, Minimumjerk, Minimum energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13223447 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain
Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami
Abstract:
In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed a user-friendly interactive design methods using the GeoGebra platform.
Keywords: Control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103446 Effect of Depression, Self-Regulation Control and Characteristics of ADHD as the Cause of School Brawl in Jakarta, Indonesia
Authors: Melani Arnaldi, Suzy Yusna Dewi
Abstract:
School brawls have taken casualties to the life of students in Jakarta. In the last time, school brawl studies investigate the cause with groups approach such as cognitive dissonance that provocation and resentment among student in the schools. This research focus on individual factors as the cause of school brawls, where the characteristics of children with ADHD, lack of self-control regulation, and level of depression. The results show that in fact the lower influence of individual factor to be come conduct disorder. The meaning students have good self-regulation control, insignificant characteristics of children with ADHD, and moderate of depression level. Concluded group factor more significant than individual factor to caused school brawl.Keywords: ADHD, depression, school brawl, self-regulation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25293445 EOG Controlled Motorized Wheelchair for Disabled Persons
Authors: A. Naga Rajesh, S. Chandralingam, T. Anjaneyulu, K. Satyanarayana
Abstract:
Assistive robotics are playing a vital role in advancing the quality of life for disable people. There exist wide range of systems that can control and guide autonomous mobile robots. The objective of the control system is to guide an autonomous mobile robot using the movement of eyes by means of EOG signal. The EOG signal is acquired using Ag/AgCl electrodes and this signal is processed by a microcontroller unit to calculate the eye gaze direction. Then according to the guidance control strategy, the control commands of the wheelchair are sent. The classification of different eye movements allows us to generate simple code for controlling the wheelchair. This work was aimed towards developing a usable and low-cost assistive robotic wheel chair system for disabled people. To live more independent life, the system can be used by the handicapped people especially those with only eye-motor coordination.
Keywords: Electrooculography, Microcontroller, Motors, Wheelchair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41253444 Structural Monitoring and Control During Support System Replacement of a Historical Gate
Authors: Ahmet Turer
Abstract:
Middle-gate is located in Hasankeyf, Batman dating back to 1800 BC and is one of the important historical structures in Turkey. The ancient structure has suffered major structural cracks due to aging as well as lateral pressure of a cracked rock which is predicted to be about 100 tons. The existing support system was found to be inadequate to support the load especially after a recent rock fall in the close vicinity. Concerns were increased since the existing support system that is integral with a damaged and cracked gate wall needed to be replaced by a new support system. The replacement process must be carefully monitored by crackmeters and control mechanisms should be integrated to prevent cracks to expand while the same crack width needs to be maintained after the operation. The control system and actions taken during the intervention are explained in this paper.Keywords: structural control, crack width, replacement, support
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12743443 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate
Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf
Abstract:
Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.
Keywords: Absorption chiller, control system, solar cooling, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14793442 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33323441 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs
Authors: K. N. Dinesh Babu, P. K. Gargava
Abstract:
Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.
Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10483440 Virtual Prototyping and Operational Monitoring of PLC-Based Control System
Authors: Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo, Geon Lee
Abstract:
As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.Keywords: automated manufacturing system, HMI, monitoring, object-oriented, PLC, virtual prototyping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22603439 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode
Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi
Abstract:
The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.Keywords: Active magnetic bearing, three pole AMB, hybrid control, Lyapunov function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15753438 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5153437 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling
Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi
Abstract:
Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.Keywords: Gripper, haptic, stiffness, robotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11543436 Perceptions of Greenhouse Vegetable Growers Regarding Use of Biological Control Practices: A Case Study in Jiroft County, Iran
Authors: Hossein Shabanali Fami, Omid Sharifi, Javad Ghasemi, Mahtab Pouratashi, Mona Sadat Moghadasian
Abstract:
The main purpose of this study was to investigate perception of greenhouse vegetable growers regarding use of biological control practices during the growing season. The statistical population of the study included greenhouse vegetable growers in Jiroft county (N=1862). A sample of 137 vegetable growers was selected, using random sampling method. Data were collected via a questionnaire. The validity of the instrument was obtained by the faculty members of the Department of Agricultural Development and Management in the University of Tehran. Cronbach’s alpha was applied to estimate the reliability which showed a high reliability for the instrument. Data was analyzed using SPSS/Windows 13.5. The results revealed that greenhouse vegetable growers had moderate level of perception regarding biological control practices. Levels of vegetable growers’ perceptions regarding biological control practices were different on the basis of their academic qualifications as well as educational level and job. In addition, the results indicated that about 54.1% of variations in vegetable growers’ perceptions could be explained by variables such as awareness of biological control practices, knowledge on pests, annual production and age.Keywords: Greenhouse, biological control, biological agents, perception, vegetable grower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17053435 Trajectory Tracking Using Artificial Potential Fields
Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai
Abstract:
In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.
Keywords: Control, Trajectory Tracking, Lyapunov.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22573434 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids
Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen
Abstract:
This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32283433 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.
Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25763432 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: Climbing stairs, FSBLC, ILC, Service robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763431 New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller
Authors: S. A. Mohamed, A. S. Zayed, O. A. Abolaeha
Abstract:
A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.Keywords: Pole-placement, Minimum variance control, self-tuning control and feedforward control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17473430 An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks
Authors: Tahar Ezzedine, Mohamed Miladi, Ridha Bouallegue
Abstract:
Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.Keywords: Control packet, energy efficiency, medium access control, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695