Search results for: Teaching and Learning.
1400 A Case Study on Vocational Teachers’ Perceptions on Their Linguistically and Culturally Responsive Teaching
Authors: Kirsi Korkealehto
Abstract:
In Finland the transformation from homogenous culture into multicultural one as a result of heavy immigration has been rapid in the recent decades. As multilingualism and multiculturalism are growing features in our society, teachers in all educational levels need to be competent for encounters with students from diverse cultural backgrounds. Consequently, also the number of multicultural and multilingual vocational school students has increased which has not been taken into consideration in teacher education enough. To bridge this gap between teachers’ competences and the requirements of the contemporary school world, Finnish Ministry of Culture and Education established the DivEd-project. The aim of the project is to prepare all teachers to work in the linguistically and culturally diverse world they live in, to develop and increase culturally sustaining and linguistically responsive pedagogy in Finland, increase awareness among Teacher Educators working with preservice teachers and to increase awareness and provide specific strategies to in-service teachers. The partners in the nationwide project are 6 universities and 2 universities of applied sciences. In this research, the linguistically and culturally sustainable teaching practices developed within the DivEd-project are tested in practice. This research aims to explore vocational teachers’ perceptions of these multilingualism and multilingual educational practices. The participants of this study are vocational teachers in of different fields. The data were collected by individual, face-to-face interviews. The data analysis was conducted through content analysis. The findings indicate that the vocational teachers experience that they lack knowledge on linguistically and culturally responsive pedagogy. Moreover, they regard themselves in some extent incompetent in incorporating multilingually and multiculturally sustainable pedagogy in everyday teaching work. Therefore, they feel they need more training pertaining multicultural and multilingual knowledge, competences and suitable pedagogical methods for teaching students from diverse linguistic and cultural backgrounds.Keywords: Multicultural, multilingual, teacher competences, vocational school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111399 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28151398 Towards Bridging the Gap between the ESP Classroom and the Workplace: Content and Language Needs Analysis in English for an Administrative Studies Course
Authors: Vesna Vulić
Abstract:
Croatia has made large steps forward in the development of higher education over the past 10 years. Purposes and objectives of the tertiary education system are focused on the personal development of young people so that they obtain competences for employment on a flexible labour market. The most frequent tensions between the tertiary institutions and employers are complaints that the current tertiary education system still supplies students with an abundance of theoretical knowledge and not enough practical skills. Polytechnics and schools of professional higher education should deliver professional education and training that will satisfy the needs of their local communities. The 21st century sets demand on undergraduates as well as their lecturers to strive for the highest standards. The skills students acquire during their studies should serve the needs of their future professional careers. In this context, teaching English for Specific Purposes (ESP) presents an enormous challenge for teachers. They have to cope with teaching the language in classes with a large number of students, limitations of time, inadequate equipment and teaching material; most frequently, this leads to focusing on specialist vocabulary neglecting the development of skills and competences required for future employment. Globalization has transformed the labour market and set new standards a perspective employee should meet. When knowledge of languages is considered, new generic skills and competences are required. Not only skillful written and oral communication is needed, but also information, media, and technology literacy, learning skills which include critical and creative thinking, collaborating and communicating, as well as social skills. The aim of this paper is to evaluate the needs of two groups of ESP first year Undergraduate Professional Administrative Study students taking ESP as a mandatory course: 47 first-year Undergraduate Professional Administrative Study students, 21 first-year employed part-time Undergraduate Professional Administrative Study students and 30 graduates with a degree in Undergraduate Professional Administrative Study with various amounts of work experience. The survey adopted a quantitative approach with the aim to determine the differences between the groups in their perception of the four language skills and different areas of law, as well as getting the insight into students' satisfaction with the current course and their motivation for studying ESP. Their perceptions will be compared to the results of the questionnaire conducted among sector professionals in order to examine how they perceive the same elements of the ESP course content and to what extent it fits into their working environment. The results of the survey indicated that there is a strong correlation between acquiring work experience and the level of importance given to particular areas of law studied in an ESP course which is in line with our initial hypothesis. In conclusion, the results of the survey should help lecturers in re-evaluating and updating their ESP course syllabi.Keywords: English for Specific Purposes, ESP, language skills, motivation, needs analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211397 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27121396 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8721395 Socio-Demographic Effects on Digital Libraries Preference and Use: A Case Study at Higher Learning Institutions
Authors: A. K. Razilan, A. B. Amzari, B. Ap-azli, A. R. Safawi
Abstract:
Explosion in information management and information system technology has brought dramatic changes in learning and library system environments. The use of academic digital libraries does witness the spectacular impact on academic societies’ way of performing their study in Malaysia, a country with a multi-racial people. This paper highlights a research on examining the socio-demographic differences on the preference and use of academic digital libraries as compared to physical libraries at higher learning institutions. Findings indicate that preference towards digital libraries differed between ethnicity, gender and university. However none of the socio-demographic factors is statistically significant in terms of the use of digital libraries.
Keywords: Socio-demographic, academic digital library, preference, use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861394 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49901393 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities
Authors: Sayed Hadi Sadeghi
Abstract:
This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.
Keywords: Support services, e-network practice, Australian universities, United States universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9891392 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6561391 Professional Development of Pre-Service Teachers: The Case of Practicum Experience
Authors: G. Lingam, N. Lingam, K. Raghuwaiya
Abstract:
The reported study focuses on pre-service teachers’ professional development during the teaching practice. The cohort studied comprised participants in their final year in the Bachelor of Arts and Bachelor of Science with Graduate Certificate in Education programmes of a university in Fiji. Analysis of the data obtained using a survey questionnaire indicates that overall, the pre-service teachers were satisfied with the practicum experience. This is assumed to demonstrate that the practicum experience contributed well towards their professional preparation for work expected of them in Fiji secondary schools. Participants also identified some concerns as needing attention. To conclude, the paper provides suggestions for improving the preparation of teachers by strengthening the identified areas of the practicum offered by the university. The study has implications for other teacher education providers in small developing island states and even beyond for the purpose of enhancing learning in student teachers’ for future work.
Keywords: Pre-service, teacher education, practicum, teachers’ world of work, student teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38381390 Modeling Child Development Factors for the Early Introduction of ICTs in Schools
Authors: K. E. Oyetade, S. D. Eyono Obono
Abstract:
One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.Keywords: Child development factors, child development theories, ICTs, theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311389 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.
Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9701388 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481387 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201386 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871385 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5251384 Collaborative Web Platform for Rich Media Educational Material Creation
Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako
Abstract:
This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041383 Contribution for Rural Development through Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: Mobile-learning, organic farming, rural development, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20781382 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4501381 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11951380 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam Ambrose Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.
Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25401379 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.
Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9441378 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24051377 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851376 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.
Keywords: Avatar-based, virtual environment, paired learning, individual differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811375 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8611374 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.
Keywords: Bilingualism, foreign language learning, L2 acquisition, willingness to communicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791373 Women in the Teaching Profession: Impacts and Challenges
Authors: A. M. Sultana, Norhirdawati. M. Zahir, Norzalan. H. Yaacob
Abstract:
Recently in Malaysia, women's participation in teaching profession has increased. The increasing trend of women’s participation in the teaching profession poses challenges in families, especially in the developing countries like Malaysia. One of these challenges, concerns in balancing their role between family and job responsibility that faced by many women teachers. The purpose of this study is to discover how women teachers' impact on family happiness and the challenges faced by them in balancing their role between family and job responsibility. The findings presented in this study are based on survey research in a secondary school Dato’ Bijaya Setia in the district of Gugusan Manjoi which is located in Kedah, Malaysia. The study found that employment of women in economic activity has several beneficial impacts of improving the economic condition of the family. The results also revealed that in low income earning families, both husbands and wives’ employment contribute to the family income that less likely to experience of family poverty. The study also showed despite women's teachers’ significant role towards the overall development of the family, the majority of women teachers encountered a number of difficulties in balancing their role between family and job responsibility especially when they need to work more than the normal working time. Therefore, it is common for the majority of women suffering from psychological stress when they are unable to complete the task at a fixed time. The present study also suggests implication of family friendly policy and its appropriate practice to support the women teachers who are significantly contributing to family, community and the country.
Keywords: Emotional exhaustion, Family friendly policy, Work family conflict, Women Teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44291372 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691371 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895