Search results for: medium temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3225

Search results for: medium temperature

2415 Optimal Temperature and Duration for Dabbing Customers with the Massage Compressed Packs Reported from Customers’ Perception

Authors: Wichan Lertlop, Boonyarat Chaleephay

Abstract:

The objective of this research was to study the appropriate thermal level and time for dabbing customers with the massage compressed pack reported from their perception. The investigation was conducted by comparing different angles of tilted heads done by the customers together with their perception before and after the dabbing. The variables included different temperature of the compressed packs and different dabbing duration. Samples in this study included volunteers who got massage therapy and dabbing with hot compressed packs by traditional Thai medical students. The experiment was conducted during January to June 2013. The research tool consisted of angle meters, stop watches, thermometers, and massage compressed packs. The customers were interviewed for their perceptions before and after the dabbing. The results showed that:

  1. There was a difference of the average angles of tilted heads before and after the dabbing.
  2. There was no difference of the average angles at different temperatures but constant duration.
  3. There was no difference of the average angles at different durations.
  4. The customers reported relaxation no matter what the various temperatures and various dabbing durations were. However, they reported too hot at the temperature 70oC and over.

Keywords: Massage, Therapy, Therapeutic Systems and Technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2414 A Study of the Variables in the Optimisation of a Platinum Precipitation Process

Authors: Tebogo Phetla, Edison Muzenda, M Belaid

Abstract:

This study investigated possible ways to improve the efficiency of the platinum precipitation process using ammonium chloride by reducing the platinum content reporting to the effluent. The ore treated consist of five platinum group metals namely, ruthenium, rhodium, iridium, platinum, palladium and a precious metal gold. Gold, ruthenium, rhodium and iridium were extracted prior the platinum precipitation process. Temperature, reducing agent, flow rate and potential difference were the variables controlled to determine the operation conditions for optimum platinum precipitation efficiency. Hydrogen peroxide was added as the oxidizing agent at the temperature of 85-90oC and potential difference of 700-850mV was the variable used to check the oxidizing state of platinum. The platinum was further purified at temperature between 60-65oC, potential difference above 700 mV, ammonium chloride of 200 l, and at these conditions the platinum content reporting to the effluent was reduced to less than 300ppm, resulting in optimum platinum precipitation efficiency and purity of 99.9%.

Keywords: Platinum Group Metals (PGM), Potential difference, Precipitation, Redox reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4769
2413 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3949
2412 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms

Authors: Camelia Petrescu, Lavinia Ferariu

Abstract:

The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.

Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
2411 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
2410 Recovering Taraxacum kok-saghyz Rodin. via Seed and Callus Culture

Authors: K. Uteulin, S. Mukhambetzhanov, I. Rakhimbaev

Abstract:

This experiment was performed to optimize the medium for tissue culture of Taraxacum kok-saghyz Rodin. Different tissue culture approaches such as shoot regeneration from seed, callus formation from leaf explants and plant regeneration from callus were investigated in this study. All the explants were cultured on MS basal medium supplemented with 20g/l sucrose, 7g/l agar and different plant growth regulators. Seeds of Taraxacum kok-saghyzwere cultured on media containing different levels of BA and 2,4-D (0.5, 1.0 and 3.0mg/L) to direct shoot regeneration study. Leaf explants were cultured in different combination of BA (at three levels: 0.5, 1.0 and 3.0mg/L) and zeatin (at two levels: 0.5 and 1.0mg/L) to examine callus formation. After the callus formation the formed calli were cultured on different combinations of BA and NAA for shoot regeneration. BA at three levels (0.5 and 1.0 and 3.0mg/L) and NAA at two levels (0.5 and 1.0mg/L) in all possible combinations were used for shoot regeneration from callus. The results showed that the treatment containing 1.0mg/L 2,4-D in combination with 1.0mg/L BA was found to be the best one for shoot regeneration from seeds. The treatment with 1.0mg/L BA in combination with 1.0mg/L zeatin were found to be suitable treatments for callus production from leaf explants, as well. Moreover, 0.5mg/L BA alone or in combination with 1.0mg/L NAA were found to be the best treatments for shoot regeneration from callus.

Keywords: Taraxacum kok-saghyz Rodin., shoot regeneration, callus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
2409 Optical Analysis of Variable Aperture Mechanism for a Solar Reactor

Authors: Akanksha Menon, Nesrin Ozalp

Abstract:

Solar energy is not only sustainable but also a clean alternative to be used as source of high temperature heat for many processes and power generation. However, the major drawback of solar energy is its transient nature. Especially in solar thermochemical processing, it is crucial to maintain constant or semiconstant temperatures inside the solar reactor. In our laboratory, we have developed a mechanism allowing us to achieve semi-constant temperature inside the solar reactor. In this paper, we introduce the concept along with some updated designs and provide the optical analysis of the concept under various incoming flux.

Keywords: Aperture, Solar reactor, Optical analysis, Solar thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
2408 Assessment and Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor 1.9% Vessel Upper Head Small-Break Loss-of-Coolant Accident

Authors: Takeshi Takeda

Abstract:

An experiment utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility) simulated a 1.9% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under the total failure of high-pressure injection system of emergency core cooling system in a pressurized water reactor. Steam generator (SG) secondary-side depressurization on the AM measure was started by fully opening relief valves in both SGs when the maximum core exit temperature rose to 623 K. A large increase took place in the cladding surface temperature of simulated fuel rods on account of a late and slow response of core exit thermocouples during core boil-off. The author analyzed the LSTF test by reference to the matrix of an integral effect test for the validation of a thermal-hydraulic system code. Problems remained in predicting the primary coolant distribution and the core exit temperature with the RELAP5/MOD3.3 code. The uncertainty analysis results of the RELAP5 code confirmed that the sample size with respect to the order statistics influences the value of peak cladding temperature with a 95% probability at a 95% confidence level, and the Spearman’s rank correlation coefficient.

Keywords: LSTF, LOCA, uncertainty analysis, RELAP5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
2407 Application of Neural Networks for 24-Hour-Ahead Load Forecasting

Authors: Fatemeh Mosalman Yazdi

Abstract:

One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.

Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
2406 Thermal Treatment Influence on the Quality of Rye Bread Packaged in Different Polymer Films

Authors: Tatjana Rakcejeva, Lija Dukalska, Olga Petrova, Dace Klava, Emils Kozlinskis, Martins Sabovics

Abstract:

this study was carried out to investigate the changes in quality parameters of rye bread packaged in different polymer films during convection air-flow thermal treatment process. Whole loafs of bread were placed in polymer pouches, which were sealed in reduced pressure air ambiance, bread was thermally treated in at temperature +(130; 140; and 150) ± 5 ºC within 40min, as long as the core temperature of the samples have reached accordingly +80±1 ºC. For bread packaging pouches were used: anti-fog Mylar®OL12AF and thermo resistant combined polymer material. Main quality parameters was analysed using standard methods: temperature in bread core, bread crumb and crust firmness value, starch granules volume and microflora. In the current research it was proved, that polymer films significantly influence rye bread quality parameters changes during thermal treatment. Thermo resistant combined polymer material film could be recommendable for packaged rye bread pasteurization, for maximal bread quality parameter keeping.

Keywords: bread, thermal treatment, bread crumb, bread crust, starch granule's volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
2405 A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Authors: Manuel Seidel, Rainer Seidel, Des Tedford, Richard Cross, Logan Wait

Abstract:

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Keywords: Environmentally benign manufacturing, SMEs, Systems modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2404 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: High-temperature starter-generator, More electrical engine, multi-criteria optimization, permanent magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
2403 Fundamental Problems in the Operation of the Automotive Parts Industry Small and Medium Businesses in Bangkok and Surrounding Provinces

Authors: P. Thepnarintra

Abstract:

The purposes of this study were to: 1) investigate operation conditions of SME automotive part industry in Bangkok and vicinity and 2) to compare operation problem levels of SME automotive part industry in Bangkok and vicinity according to the sizes of the enterprises. Samples in this study included 196 entrepreneurs of SME automotive part industry in Bangkok and vicinity derived from simple random sampling and calculation from R. V. Krejcie and D. W. Morgan’s tables. Research statistics included frequency, percentage, mean, standard deviation, and T-test. The results revealed that in general the problem levels of SME automotive part industry in Bangkok and vicinity were high. When considering in details, it was found that the problem levels were high at every aspect, i.e. personal, production, export, finance, and marketing respectively. The comparison of the problem levels according to the sizes of the enterprises revealed statistically significant differences at .05. When considering on each aspect, it was found that the aspect with the statistical difference at .05 included 5 aspects, i.e. production, marketing, finance, personal, and export. The findings also showed that small enterprises faced more severe problems than those of medium enterprises.

Keywords: Automotive part industry, operation problems, SME, perimeter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2402 Augmented Reality for Maintenance Operator for Problem Inspections

Authors: Chong-Yang Qiao, Teeravarunyou Sakol

Abstract:

Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.

Keywords: Augmented reality, situation awareness, decision-making, problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
2401 The Role of Knowledge Management in Innovation: Spanish Evidence

Authors: María Jesús Luengo-Valderrey, Mónica Moso-Díez

Abstract:

In the knowledge-based economy, innovation is considered essential in order to achieve survival and growth in organizations. On the other hand, knowledge management is currently understood as one of the keys to innovation process. Both factors are generally admitted as generators of competitive advantage in organizations. Specifically, activities on R&D&I and those that generate internal knowledge have a positive influence in innovation results. This paper examines this effect and if it is similar or not is what we aimed to quantify in this paper. We focus on the impact that proportion of knowledge workers, the R&D&I investment, the amounts destined for ICTs and training for innovation have on the variation of tangible and intangibles returns for the sector of high and medium technology in Spain. To do this, we have performed an empirical analysis on the results of questionnaires about innovation in enterprises in Spain, collected by the National Statistics Institute. First, using clusters methodology, the behavior of these enterprises regarding knowledge management is identified. Then, using SEM methodology, we performed, for each cluster, the study about cause-effect relationships among constructs defined through variables, setting its type and quantification. The cluster analysis results in four groups in which cluster number 1 and 3 presents the best performance in innovation with differentiating nuances among them, while clusters 2 and 4 obtained divergent results to a similar innovative effort. However, the results of SEM analysis for each cluster show that, in all cases, knowledge workers are those that affect innovation performance most, regardless of the level of investment, and that there is a strong correlation between knowledge workers and investment in knowledge generation. The main findings reached is that Spanish high and medium technology companies improve their innovation performance investing in internal knowledge generation measures, specially, in terms of R&D activities, and underinvest in external ones. This, and the strong correlation between knowledge workers and the set of activities that promote the knowledge generation, should be taken into account by managers of companies, when making decisions about their investments for innovation, since they are key for improving their opportunities in the global market.

Keywords: High and medium technology sector, innovation, knowledge management, Spanish companies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
2400 Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

Authors: A.N. Ilia Anisa, Abdurahman H.Nour

Abstract:

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

Keywords: Diameter, phase ratio, viscosity, water-in-crude oil(w/o).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7686
2399 Optimization of HALO Structure Effects in 45nm p-type MOSFETs Device Using Taguchi Method

Authors: F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim, H. A. Elgomati, B. Y. Majlis, P. R. Apte

Abstract:

In this study, the Taguchi method was used to optimize the effect of HALO structure or halo implant variations on threshold voltage (VTH) and leakage current (ILeak) in 45nm p-type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) device. Besides halo implant dose, the other process parameters which used were Source/Drain (S/D) implant dose, oxide growth temperature and silicide anneal temperature. This work was done using TCAD simulator, consisting of a process simulator, ATHENA and device simulator, ATLAS. These two simulators were combined with Taguchi method to aid in design and optimize the process parameters. In this research, the most effective process parameters with respect to VTH and ILeak are halo implant dose (40%) and S/D implant dose (52%) respectively. Whereas the second ranking factor affecting VTH and ILeak are oxide growth temperature (32%) and halo implant dose (34%) respectively. The results show that after optimizations approaches is -0.157V at ILeak=0.195mA/μm.

Keywords: Optimization, p-type MOSFETs device, HALO Structure, Taguchi Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
2398 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization

Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda

Abstract:

The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.

Keywords: Initiator, bulk polymerization, layered silicates, methyl methacrylate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
2397 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
2396 Towards CO2 Adsorption Enhancement via Polyethyleneimine Impregnation

Authors: Supasinee Pipatsantipong, Pramoch Rangsunvigit, Santi Kulprathipanja

Abstract:

To reduce the carbon dioxide emission into the atmosphere, adsorption is believed to be one of the most attractive methods for post-combustion treatment of flue gas. In this work, activated carbon (AC) was modified by polyethylenimine (PEI) via impregnation in order to enhance CO2 adsorption capacity. The adsorbents were produced at 0.04, 0.16, 0.22, 0.25, and 0.28 wt% PEI/AC. The adsorption was carried out at a temperature range from 30 °C to 75 °C and five different gas pressures up to 1 atm. TG-DTA, FT-IR, UV-visible spectrometer, and BET were used to characterize the adsorbents. Effects of PEI loading on the AC for the CO2 adsorption were investigated. Effectiveness of the adsorbents on the CO2 adsorption including CO2 adsorption capacity and adsorption temperature was also investigated. Adsorption capacities of CO2 were enhanced with the increase in the amount of PEI from 0.04 to 0.22 wt% PEI before the capacities decreased onwards from0.25 wt% PEI at 30 °C. The 0.22 wt% PEI/AC showed higher adsorption capacity than the AC for adsorption at 50 °C to 75 °C.

Keywords: Activated Carbon, Adsorption, CO2, Polyethyleneimine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
2395 Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Enclosure with Non-Uniform Heating on Both Side Walls

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=103 to 106, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between Ø = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. For γ=π/2 and Ra=105 the magnetic field augments the effect of nanoparticles. At Ha=0, the greatest effects of nanoparticles are obtained at γ = 0 and π/4 for Ra=104 and 105 respectively.

 

Keywords: Lattice Boltzmann Method, magnetic field, Natural convection, nanofluid, Sinusoidal temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
2394 Hybrid MAC Protocols Characteristics in Multi-hops Wireless Sensor Networks

Authors: M. Miladi, T. Ezzedine, R. Bouallegue

Abstract:

In the current decade, wireless sensor networks are emerging as a peculiar multi-disciplinary research area. By this way, energy efficiency is one of the fundamental research themes in the design of Medium Access Control (MAC) protocols for wireless sensor networks. Thus, in order to optimize the energy consumption in these networks, a variety of MAC protocols are available in the literature. These schemes were commonly evaluated under simple network density and a few results are published on their robustness in realistic network-s size. We, in this paper, provide an analytical study aiming to highlight the energy waste sources in wireless sensor networks. Then, we experiment three energy efficient hybrid CSMA/CA based MAC protocols optimized for wireless sensor networks: Sensor-MAC (SMAC), Time-out MAC (TMAC) and Traffic aware Energy Efficient MAC (TEEM). We investigate these protocols with different network densities in order to discuss the end-to-end performances of these schemes (i.e. in terms of energy efficiency, delay and throughput). Through Network Simulator (NS- 2) implementations, we explore the behaviors of these protocols with respect to the network density. In fact, this study may help the multihops sensor networks designers to design or select the MAC layer which matches better their applications aims.

Keywords: Energy efficiency, medium access control, network density, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
2393 Thermoelastic Damping of Inextensional Hemispherical Shell

Authors: S. Y. Choi, Y. H. Na, J. H. Kim

Abstract:

In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.

Keywords: Thermoelastic damping, hemispherical shell, quality factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2392 Effect of Cooling Coherent Nozzle Orientation on the Machinability of Ti-6Al-4V in Step Shoulder Milling

Authors: Salah Gariani, Islam Shyha, Osama Elgadi, Khaled Jegandi

Abstract:

In this work, a cooling coherent round nozzle was developed and the impact of nozzle placement (i.e. nozzle angle and stand-off/impinging distance) on the machinability of Ti-6Al-4V was evaluated. Key process measures were cutting force, workpiece temperature, tool wear, burr formation and average surface roughness (Ra). Experimental results showed that nozzle position at a 15° angle in the feed direction and 45°/60° against feed direction assisted in minimising workpiece temperature. A stand-off distance of 55 and 75 mm is also necessary to control burr formation, workpiece temperature and Ra, but coherent nozzle orientation has no statistically significant impact on the mean values of cutting force and tool wear. It can be concluded that stand-off distance is more substantially significant than nozzle angles when step shoulder milling Ti-6Al- 4V using vegetable oil-based cutting fluid.

Keywords: Coherent round nozzle, step shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
2391 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
2390 Customers’ Perception towards the Service Marketing Mix and Frequency of Use of Mercedes Benz Automobile Service, Thailand

Authors: Pranee Tridhoskul

Abstract:

This research paper is aimed to examine a relationship between the service marketing mix and customers’ frequency of use of service at Mercedes Benz Auto Repair Centres under Thonburi Group, Thailand. Based on 2,267 customers who used the service of Thonburi Group’s Auto Repair Centres as the population, the sampling of this research was a total of 340 samples, by use of Probability Sampling Technique. Systematic Random Sampling was applied by use of questionnaire in collecting the data at Thonburi Group’s Auto Repair Centres. Mean and Pearson’s basic statistical correlations were utilized in analyzing the data. The study discovered a medium level of customers’ perception towards product and service of Thonburi Group’s Auto Repair Centres, price, place or distribution channel and promotion. People who provided service were perceived also at a medium level, whereas the physical evidence and service process were perceived at a high level. Furthermore, there appeared a correlation between the physical evidence and service process, and customers’ frequency of use of automobile service per year.

Keywords: Service Marketing Mix, Behavior, Mercedes Auto Service Centre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
2389 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2388 Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: A. H. Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: Diffusion, gases cross-over, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
2387 Modeling Drying and Pyrolysis of Moist Wood Particles at Slow Heating Rates

Authors: Avdhesh K. Sharma

Abstract:

Formulation for drying and pyrolysis process in packed beds at slow heating rates is presented. Drying of biomass particles bed is described by mass diffusion equation and local moisture-vapour-equilibrium relations. In gasifiers, volatilization rate during pyrolysis of biomass is modeled by using apparent kinetic rate expression, while product compositions at slow heating rates is modeled using empirical fitted mass ratios (i.e., CO/CO2, ME/CO2, H2O/CO2) in terms of pyrolysis temperature. The drying module is validated fairly with available chemical kinetics scheme and found that the testing zone in gasifier bed constituted of relatively smaller particles having high airflow with high isothermal temperature expedite the drying process. Further, volatile releases more quickly within the shorter zone height at high temperatures (isothermal). Both, moisture loss and volatile release profiles are found to be sensitive to temperature, although the influence of initial moisture content on volatile release profile is not so sensitive.

Keywords: Modeling downdraft gasifier, drying, pyrolysis, moist woody biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
2386 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: Conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490