Search results for: linear statistical model
8498 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13168497 Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin
Authors: Wardah, T., Kamil, A.A., Sahol Hamid, A.B., Maisarah, W.W.I
Abstract:
Quantitative precipitation forecast (QPF) from atmospheric model as input to hydrological model in an integrated hydro-meteorological flood forecasting system has been operational in many countries worldwide. High-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km have great potential in contributing towards reasonably accurate QPF. In this study the potential of two NWP models to forecast precipitation for a flood-prone area in a tropical region is examined. The precipitation forecasts produced from the Fifth Generation Penn State/NCAR Mesoscale (MM5) and Weather Research and Forecasting (WRF) models are statistically verified with the observed rain in Kelantan River Basin, Malaysia. The statistical verification indicates that the models have performed quite satisfactorily for low and moderate rainfall but not very satisfactory for heavy rainfall.Keywords: MM5, Numerical weather prediction (NWP), quantitative precipitation forecast (QPF), WRF
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29308496 Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park
Authors: Ezequiel Garcia-Rodriguez, Luis A. Ochoa-Franco, Adrian I. Cervantes-Servin
Abstract:
In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.Keywords: Habitat modification, Ictalurus punctatus, Lerma, river, linear park.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16098495 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases
Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro
Abstract:
In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.
Keywords: Flame spectra, removing baseline, recovering spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17528494 Radiobiological Model in Radiotherapy Planning for Prostate Cancer Treatment
Authors: Pradip Deb
Abstract:
Quantitative radiobiological models can be used to assess the optimum clinical outcome from sophisticated therapeutic modalities by calculating tumor control probability (TCP) and normal tissue complication probability (NTCP). In this study two 3D-CRT and an IMRT treatment plans were developed with an initial prescription dose of 60 Gy in 2 Gy/fraction to prostate. Sensitivity of TCP and Complication free tumor control probability (P+) to the different values of α/β ratio was investigated for various prescription doses planned to be delivered in either a fixed number of fractions (I) or in a fixed dose per fraction (II) in each of the three different treatment plans. High dose/fraction and high α/β value result in comparatively smaller P+ and IMRT plans resulted in the highest P+, mainly due to the decrease in NTCP. If α/β is lower than expected, better tumor control can be achieved by increasing dose/fraction but decreasing the number of fractions.Keywords: Linear Quadratic Model, TCP, NTCP, α/β ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18528493 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18938492 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices
Authors: Li Jiang, Baoguang Tian
Abstract:
In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12028491 Investigation of Regional Differences in Strong Ground Motions for the Iranian Plateau
Authors: Farhad Sedaghati, Shahram Pezeshk
Abstract:
Regional variations in strong ground motions for the Iranian Plateau have been investigated by using a simple statistical method called Analysis of Variance (ANOVA). In this respect, a large database consisting of 1157 records occurring within the Iranian Plateau with moment magnitudes of greater than or equal to 5 and Joyner-Boore distances up to 200 km has been considered. Geometric averages of horizontal peak ground accelerations (PGA) as well as 5% damped linear elastic response spectral accelerations (SA) at periods of 0.2, 0.5, 1.0, and 2.0 sec are used as strong motion parameters. The initial database is divided into two different datasets, for Northern Iran (NI) and Central and Southern Iran (CSI). The comparison between strong ground motions of these two regions reveals that there is no evidence for significant differences; therefore, data from these two regions may be combined to estimate the unknown coefficients of attenuation relationships.
Keywords: ANOVA, attenuation relationships, Iranian Plateau, PGA, regional variation, SA, strong ground motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12968490 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model
Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian
Abstract:
Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.
Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18088489 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis
Authors: M. Sasajima, T. Yamaguchi, Y. Koike, A. Hara
Abstract:
This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.Keywords: Nonlinear Vibration, Finite Element Method, Chaos , Small Earphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17838488 Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.Keywords: alcohol/ether fuel, Cu-Zn-Al-Zr slurry catalyst, global kinetics, slurry reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55218487 Coalescence of Insulin and Triglyceride/High Density Lipoprotein Cholesterol Ratio for the Derivation of a Laboratory Index to Predict Metabolic Syndrome in Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Morbid obesity is a health threatening condition particularly in children. Generally, it leads to the development of metabolic syndrome (MetS) characterized by central obesity, elevated fasting blood glucose (FBG), triglyceride (TRG), blood pressure values and suppressed high density lipoprotein cholesterol (HDL-C) levels. However, some ambiguities exist during the diagnosis of MetS in children below 10 years of age. Therefore, clinicians are in the need of some surrogate markers for the laboratory assessment of pediatric MetS. In this study, the aim is to develop an index, which will be more helpful during the evaluation of further risks detected in morbid obese (MO) children. A total of 235 children with normal body mass index (N-BMI), with varying degrees of obesity; overweight (OW), obese (OB), MO as well as MetS participated in this study. The study was approved by the Institutional Ethical Committee. Informed consent forms were obtained from the parents of the children. Obesity states of the children were classified using BMI percentiles adjusted for age and sex. For the purpose, tabulated data prepared by WHO were used. MetS criteria were defined. Systolic and diastolic blood pressure values were measured. Parameters related to glucose and lipid metabolisms were determined. FBG, insulin (INS), HDL-C, TRG concentrations were determined. Diagnostic Obesity Notation Model Assessment Laboratory (DONMALAB) Index [ln TRG/HDL-C*INS] was introduced. Commonly used insulin resistance (IR) indices such as Homeostatic Model Assessment for IR (HOMA-IR) as well as ratios such as TRG/HDL-C, TRG/HDL-C*INS, HDL-C/TRG*INS, TRG/HDL-C*INS/FBG, log, and ln versions of these ratios were calculated. Results were interpreted using statistical package program (SPSS Version 16.0) for Windows. The data were evaluated using appropriate statistical tests. The degree for statistical significance was defined as 0.05. 35 N, 20 OW, 47 OB, 97 MO children and 36 with MetS were investigated. Mean ± SD values of TRG/HDL-C were 1.27 ± 0.69, 1.86 ± 1.08, 2.15 ± 1.22, 2.48 ± 2.35 and 4.61 ± 3.92 for N, OW, OB, MO and MetS children, respectively. Corresponding values for the DONMALAB index were 2.17 ± 1.07, 3.01 ± 0.94, 3.41 ± 0.93, 3.43 ± 1.08 and 4.32 ± 1.00. TRG/HDL-C ratio significantly differed between N and MetS groups. On the other hand, DONMALAB index exhibited statistically significant differences between N and all the other groups except the OW group. This index was capable of discriminating MO children from those with MetS. Statistically significant elevations were detected in MO children with MetS (p < 0.05). Multiple parameters are commonly used during the assessment of MetS. Upon evaluation of the values obtained for N, OW, OB, MO groups and for MO children with MetS, the [ln TRG/HDL-C*INS] value was unique in discriminating children with MetS.
Keywords: Children, index, laboratory, metabolic syndrome, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7278486 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
Keywords: Decentralized, optimal control, output, singular perturb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15688485 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations
Authors: Safae El Alaoui, Mohamed Ouzahra
Abstract:
In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.
Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3638484 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: High-speed transportation, Hyperloop, railways transportation, single-sided linear induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36688483 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty
Authors: Ganesh Kothapalli, Mohammed Y. Hassan
Abstract:
The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.Keywords: excavator, fuzzy control, hydraulics, mining, type-2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16438482 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16488481 Modelling and Control of Milk Fermentation Process in Biochemical Reactor
Authors: Jožef Ritonja
Abstract:
The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14828480 Predictive Analytics of Student Performance Determinants in Education
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.
Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5488479 Dimension Reduction of Microarray Data Based on Local Principal Component
Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal
Abstract:
Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.
Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15748478 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.
Keywords: Goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, type-I error, penalized quasi-likelihood, power, quasi-likelihood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7338477 CART Method for Modeling the Output Power of Copper Bromide Laser
Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva
Abstract:
This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.
Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18238476 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17668475 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23288474 Application the Statistical Conditional Entropy Function for Definition of Cause-and-Effect Relations during Primary Soil Formation
Authors: Vladimir K. Mukhomorov
Abstract:
Within the framework of a method of the information theory it is offered statistics and probabilistic model for definition of cause-and-effect relations in the coupled multicomponent subsystems. The quantitative parameter which is defined through conditional and unconditional entropy functions is introduced. The method is applied to the analysis of the experimental data on dynamics of change of the chemical elements composition of plants organs (roots, reproductive organs, leafs and stems). Experiment is directed on studying of temporal processes of primary soil formation and their connection with redistribution dynamics of chemical elements in plant organs. This statistics and probabilistic model allows also quantitatively and unambiguously to specify the directions of the information streams on plant organs.Keywords: Chemical elements, entropy function, information, plants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13598473 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion
Authors: Sajeena Beevi. B, Jose P. P., G. Madhu
Abstract:
The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L and 20.32 g/L respectively.
Keywords: Anaerobic Digestion, Biogas, Optimization, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47738472 Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling
Authors: M. R. Nematollahi
Abstract:
Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.Keywords: Subcooled boiling, vibration mechanism, bubble behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15428471 The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory
Authors: Ali Ameur Haj Salah, Tarek Garna, Hassani Messaoud
Abstract:
This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.
Keywords: LSDP, Gap metric, Robust Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15048470 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24158469 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.
Keywords: Blood pressure, noninvasive optical system, PCA, continuous monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687