CART Method for Modeling the Output Power of Copper Bromide Laser
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
CART Method for Modeling the Output Power of Copper Bromide Laser

Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva

Abstract:

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085563

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823

References:


[1] N. V. Sabotinov, "Metal vapor lasers," in: Gas Lasers, M. Endo R.and F. Walter, Eds., Boca Raton: CRC Press, 2006, pp. 449-494.
[2] P. G. Foster, Industrial applications of copper bromide laser technology, Ph.D. Dissertation, University of Adelaide, School of Chemistry and Physics, Dept. of Physics and Mathematical Physics, Australia, 2005.
[3] M. J. Kushner and B. E. Warner, "Large bore copper vapor lasers: Kinetics and scaling issues," Journal of Applied Physics, vol. 54, pp. 2970-2982, 1983.
[4] Encyclopedia of Low-temperature Plasma, Series B, vol. 7: Numerical modeling of low-temperature plasmas, M. Ianus, Ed., Moscow, 2004 (in Russian).
[5] A. M. Boichenko, G. S. Evtushenko, and S. N. Torgaev, "Simulation of a CuBr laser," Laser Physics, Springer, vol. 18, pp. 1522-1525, 2008.
[6] S. G. Gocheva-Ilieva and I. P. Iliev, "Statistical models of characteristics of metal vapor lasers," New York: Nova Science Publishers, Inc., 2011.
[7] I. P. Iliev, S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. Sabotinov, "Statistical analysis of the CuBr laser efficiency improvement," Optics and Laser Technology, Elsevier, vol. 40, no. 4, pp. 641-646, 2008.
[8] I. P., Iliev S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. Sabotinov, "Statistical approach in planning experiments with a copper bromide vapor laser," Quantum Electronics, vol. 38, no. 5, pp. 436-440, 2008. PNE PH2 DR PIN C PIN PIN PRF PRF C PIN PIN
[9] I. P. Iliev, S.G. Gocheva-Ilieva, and N.V. Sabotinov, "Classification analysis of CuBr laser parameters," Quantum Electron, vol. 39, pp. 143- 146, 2009.
[10] S. G. Gocheva-Ilieva and I. P. Iliev, "Parametric and nonparametric empirical regression models: case study of copper bromide laser generation," Mathematical Problems in Engineering, Hindawi Publishing Corporation, vol. 2010, Article ID 697687, 15 pages, 2010.
[11] S. G. Gocheva-Ilieva and I. P. Iliev, "Nonlinear regression model of copper bromide laser generation," in Proc. COMPSTAT'2010, Y. Lechevallier, G. Saporta, Eds., 19th Int. Conf. Comput. Statistics, Paris - France, August 22-27, Physica-Verlag, Springer_ebook, pp. 1063-1070, 2010.
[12] I. P. Iliev, D. S. Voynikova, and S. G. Gocheva-Ilieva, "Simulation of the output power of copper bromide lasers by the MARS method," Quantum Electronics, vol. 42, No 4, pp. 298-303, 2012.
[13] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Belmont: Wadsworth International, 1984.
[14] D. Steinberg, Dan and Phillip Colla, CART: Tree-Structured Non- Parametric Data Analysis, San Diego: Salford Systems, 1995.
[15] R. Nisbet, J. Elder, and G. Miner, Handbook of statistical analysis and data mining applications, Elsevier Academic Press, Burlington, 2009. Ch. 11.
[16] CART® Classification and Regression Trees, 2012. http://www.salfordsystems. com/en/products/cart, Accessed 10 Jan 2013.
[17] N. V. Sabotinov, P. K. Telbizov, and S. D. Kalchev, Bulgarian patent N 28674, 1975.
[18] N. V. Sabotinov, N. K. Vuchkov, and D. N. Astadjov, "Gas laser discharge tube with copper halide vapors," United States Patent 4635271, 1987.
[19] D. N. Astadjov, N. V. Sabotinov, and N. K. Vuchkov, "Effect of hydrogen on CuBr laser power and efficiency," Opt. Commun. vol. 56 pp. 279-282, 1985.
[20] D. N. Astadjov, K. D. Dimitrov, C. E. Little, and N. V. Sabotinov, "A CuBr laser with 1.4 W/cm3 average output power," IEEE J. Quant. Electronics, vol. 30, pp.1358-1360, 1994.
[21] V. M. Stoilov, D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, "High spatial intensity 10 W- CuBr laser with hydrogen additives," Opt. and Quant. Electron. vol. 32, pp. 1209-1217, 2000.
[22] NATO contract SfP, 97 2685, 50W Copper Bromide laser, 2000.
[23] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. L. Kirkov, C. E. Little, N. Little, et al., "Influence on operating characteristics of scaling sealedoff CuBr lasers in active length," Opt. Commun. vol. 135, pp. 289-294, 1997.
[24] K. D. Dimitrov, N. V. Sabotinov, "High-power and high-efficiency copper bromide vapor laser," SPIE, vol. 3052, pp. 126-130, 1996.
[25] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, N. V. Sabotinov et al., "Copper bromide laser of 120-W average output power," IEEE J. Quant. Electron. vol. 33, pp. 705-709, 1997.
[26] N. P. Denev, D. N. Astadjov, and N. V. Sabotinov, "Analysis of the copper bromide laser efficiency," in Proc. of Fourth Intern. Symp. on Laser Technologies and Lasers-2005, Plovdiv, Bulgaria, pp. 153-156, 2006.
[27] L. Leech, K. C. Barrett, G. A. Morgan, SPSS for Intermediate Statistics: Use and Interpretation, 2nd ed., Lawrence Erlbaum Associates Publishers, New Jersey, 2005, ch. 2.
[28] A. J. Izenman, Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning, New York: Springer, 2008, Ch. 9.