Search results for: high temperature deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7891

Search results for: high temperature deformation

7081 Effect of Transglutaminase Cross Linking on the Functional Properties as a Function of NaCl Concentration of Legumes Protein Isolate

Authors: Nahid A. Ali, Salma H. Ahmed, ElShazali A. Mohamed, Isam A. Mohamed Ahmed, Elfadil E.Babiker

Abstract:

The effect of cross linking of the protein isolates of three legumes with the microbial enzyme transglutaminase (EC 2.3.2.13) on the functional properties at different NaCl concentration was studied. The reduction in the total free amino groups (OD340) of the polymerized protein showed that TGase treatment cross-linking the protein subunit of each legume. The solubility of the protein polymer of each legume was greatly improved at high concentration of NaCl. At 1.2 M NaCl the solubility of the native legumes protein was significantly decreased but after polymerization slightly improved. Cross linked proteins were less turbid on heating to higher temperature as compared to native proteins and the temperature at which the protein turns turbid also increased in the polymerized proteins. The emulsifying and foaming properties of the protein polymer were greatly improved at all concentrations of NaCl for all legumes.

Keywords: Functional properties, Legumes, Protein isolate, NaCl, Transglutaminase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
7080 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink

Authors: Bandaris Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.

Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
7079 Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.

Keywords: Remote sensing, cascaded fiber Bragg grating, strain sensor, wavelength shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
7078 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: Dissimilar metals, soldering, joint strength, EMI shielding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
7077 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: Casting, cylinder liners, journal bearing, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
7076 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
7075 Marangoni Instability in a Fluid Layer with Insoluble Surfactant

Authors: Ainon Syazana Ab. Hamid, Seripah Awang Kechil, Ahmad Sukri Abd. Aziz

Abstract:

The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.

Keywords: Analytical solutions, Marangoni Instability, Nondeformable free surface, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
7074 Adaptive Thermal Comfort Model for Air-Conditioned Lecture Halls in Malaysia

Authors: B. T. Chew, S. N. Kazi, A. Amiri

Abstract:

This paper presents an adaptive thermal comfort model study in the tropical country of Malaysia. A number of researchers have been interested in applying the adaptive thermal comfort model to different climates throughout the world, but so far no study has been performed in Malaysia. For the use as a thermal comfort model, which better applies to hot and humid climates, the adaptive thermal comfort model was developed as part of this research by using the collected results from a large field study in six lecture halls with 178 students. The relationship between the operative temperature and behavioral adaptations was determined. In the developed adaptive model, the acceptable indoor neutral temperatures lay within the range of 23.9-26.0C, with outdoor temperatures ranging between 27.0-34.6C. The most comfortable temperature for students in lecture hall was 25.7C.

Keywords: Hot and humid, Lecture halls, Neutral temperature, Adaptive thermal comfort model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
7073 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: Injection molding, melt viscosity, shear rate, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
7072 TBC for Protection of Al Alloy Aerospace Component

Authors: P. Niranatlumpong, H. Koiprasert, C. Sukhonket, K. Ninon, N. Coompreedee

Abstract:

The use of a conventional air plasma-sprayed thermal barrier coating (TBC) and a porous, functionally graded TBC as a thermal insulator for Al7075 alloy was explored. A quench test at 1200°C employing fast heating and cooling rates was setup to represent a dynamic thermal condition of an aerospace component. During the test, coated samples were subjected the ambient temperature of 1200°C for a very short time. This was followed by a rapid drop in temperature resulting in cracking of the coatings. For the conventional TBC, it was found that the temperature of the Al7075 substrate decreases with the increase in the ZrO2 topcoat thickness. However, at the topcoat thickness of 1100 µm, large horizontal cracks can be observed in the topcoat and at the topcoat thickness of 1600 µm, the topcoat delaminate during cooling after the quench test. The porous, functionally graded TBC with 600 µm thick topcoat, on the other hand, was found to be as effective at reducing the substrate temperature as the conventional TBC with 1100 µm thick topcoat. The maximum substrate temperature is about 213°C for the former and 208°C for the latter when a heating rate of 38°C/s was used. When the quench tests were conducted with a faster heating rate of 128°C/s, the Al7075 substrate heat up faster with a reduction in the maximum substrate temperatures. The substrate temperatures dropped from 297 to 212°C for the conventional TBC and from 213 to 155°C for the porous TBC, both with 600 µm thick topcoat. Segmentation cracks were observed in both coating after the quench test.

Keywords: Thermal barrier coating, Al7075, porous TBC, Quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
7071 Climate Change and the Problem of Malaria in Armenia

Authors: Ara Sh. Keshishyan, Dezdemonia V. Manukyan, Gayane G. Melik-Andreasyan, Maria V. Harutyunova, Karine V. Harutyunova

Abstract:

The data presented in this work show that in Armenia a rise of air temperature is expected in the season, and annual terms. As a result of the noted increase in temperature, a significant growth of vulnerability of the territory of Armenia in relation to malaria is expected. Zoning by the risk of renewed malaria transmission has been performed.

Keywords: Armenia, climate change, malaria, zoning of Armenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
7070 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
7069 Methods for Manufacture of Corrugated Wire Mesh Laminates

Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely

Abstract:

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
7068 Design and Analysis of a Solar Refrigeration System with a Rotating Generator

Authors: K. Bouhadef, S. Chikh, A. Boumedien, A. Benabdesselam

Abstract:

A solar refrigeration system based on the adsorptiondesorption phenomena is designed and analyzed. An annular tubular generator filled with silica gel adsorbent and with a perforated inner cylinder is integrated within a flat solar collector. The working fluid in the refrigeration cycle is water. The thermodynamic analysis and because of the temperature level that could be attained with a flat solar collector it is required that the system operates under vacuum conditions. In order to enhance the performance of the system and to get uniform temperature in the silica gel and higher desorbed mass, an apparatus for rotation of the generator is incorporated in the system. Testing is carried out and measurements are taken on the designed installation. The effect of rotation is checked on the temperature distribution and on the performance of this machine and compared to the flat solar collector with fixed generator.

Keywords: Refrigeration cycle, solar energy, rotating collector, adsorption, silica gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
7067 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Authors: Jiahua Zhang, Qing Chang, Fengmei Yao

Abstract:

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Keywords: Grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
7066 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk

Authors: Radhika Jain, Sangeeta Goomer

Abstract:

In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.

Keywords: Extrusion, NDpCal%, protein quality, wadi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
7065 Study on Cross-flow Heat Transfer in Fixed Bed

Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang

Abstract:

Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.

Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
7064 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
7063 Low resistivity Hf/Al/Ni/Au Ohmic Contact Scheme to n-Type GaN

Authors: Y. Liu, M. K. Bera, L. M. Kyaw, G. Q. Lo, E. F. Chor

Abstract:

The electrical and structural properties of Hf/Al/Ni/Au (20/100/25/50 nm) ohmic contact to n-GaN are reported in this study. Specific contact resistivities of Hf/Al/Ni/Au based contacts have been investigated as a function of annealing temperature and achieve the lowest value of 1.09´10-6 Ω·cm2 after annealing at 650 oC in vacuum. A detailed mechanism of ohmic contact formation is discussed. By using different chemical analyses, it is anticipated that the formation of Hf-Al-N alloy might be responsible to form low temperature ohmic contacts for the Hf-based scheme to n-GaN.

Keywords: Gallium nitride, ohmic contact, Hafnium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
7062 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: Conduction, inverse problems, conjugated gradient method, laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
7061 A Detailed Review on Pin Fin Heat Sink

Authors: Vedulla Manoj Kumar, B. Nageswara Rao, Sk. Farooq

Abstract:

Heat sinks are being considered in many advanced heat transfer applications including automotive and stationary fuel cells as well as cooling of electronic devices. However, there are innumerable fundamental issues in the fields of heat transfer and fluid mechanics perspectives which remains unresolved. The present review emphasizes on the progress of research in the field of pin fin heat sinks, while understanding the fluid dynamics and heat transfer characteristics with a detailed and sophisticated prediction of the temperature distribution, high heat flux removal and by minimizing thermal resistance. Lot of research work carried out across the globe to address this challenge and trying to come up with an economically viable and user friendly solution. The high activities for future pin fin heat sinks research and development to meet the current issue is recorded in this article.

Keywords: Heat sinks, heat transfer, heat flux, thermal resistance, electronic devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2657
7060 Determination of Recrystallization Temperature of Varying Degrees Formed Aluminium, by DMTA Technique

Authors: Zsolt Dugár, Péter Barkóczy, Gábor Béres, Dávid Kis, Attila Bata, Tamás Dugár, Zoltán Weltsch

Abstract:

This study is about the structural transformations of aluminium examining with the Dynamic Mechanical Thermal Analyzer (DMTA). It is a faster and simpler measuring method to make consequence about the metal’s structural transformations. The device measures the changing of the mechanical characteristics depending on the heating rate, and concludes certain transformations. This measuring method fast and shows clean-cut results comparing the conventional ways. Applying polymer measuring devices for metal investigations is not widespread method. One of the adaptable ways is shown in this study. The article compares the results of the small specimen test and the DMTA method, considering the temperature and the forming dependence of recrystallization temperature.

Keywords: DMTA, recrystallization, cold forming, rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
7059 Microwave Sintering and Its Application on Cemented Carbides

Authors: Rumman Md Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi

Abstract:

Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials requires further studies and attention. In addition, the effect of binder materials and their behavior during microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, highlighting some of the key issues and challenges faced in this research area.

Keywords: Cemented carbides, consolidation, microwave sintering, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
7058 Development of Cooling Demand by Computerize

Authors: Bobby Anak John, Zamri Noranai, Md. Norrizam Mohmad Jaat, Hamidon Salleh, Mohammad Zainal Md Yusof

Abstract:

Air conditioning is mainly use as human comfort cooling medium. It use more in high temperatures are country such as Malaysia. Proper estimation of cooling load will archive ideal temperature. Without proper estimation can lead to over estimation or under estimation. The ideal temperature should be comfort enough. This study is to develop a program to calculate an ideal cooling load demand, which is match with heat gain. Through this study, it is easy to calculate cooling load estimation. Objective of this study are to develop user-friendly and easy excess cooling load program. This is to insure the cooling load can be estimate by any of the individual rather than them using rule-of-thumb. Developed software is carryout by using Matlab-GUI. These developments are only valid for common building in Malaysia only. An office building was select as case study to verify the applicable and accuracy of develop software. In conclusion, the main objective has successfully where developed software is user friendly and easily to estimate cooling load demand.

Keywords: Cooling Load, Heat Gain, Building and GUI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
7057 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

Authors: Ilham S. M. Elsayed

Abstract:

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

Keywords: Urban heat island, Alahsa Governorate, weather station, population density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
7056 Sous Vide Packaging Technology Application for Salad with Meat in Mayonnaise Shelf Life Extension

Authors: Vita Levkane, Sandra Muizniece-Brasava, Lija Dukalska

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of sous vide packaging during the storage time of salad with meat in mayonnaise at different storage temperature. Samples were evaluated at 0, 1, 3, 7, 10, 15, 18, 25, 29, 42, and 52 storage days at the storage temperature of +4±0.5 ºC and +10±0.5 ºC. Experimentally the quality of the salad with meat in mayonnaise was characterized by measuring colour, pH and microbiological properties. The sous vide packaging was effective in protecting the product from physical, chemical, and microbial quality degradation. The sous vide packaging significantly reduces microbial growth at storage temperature of +4±0.5 ºC and +10±0.5 ºC. Moreover, it is possible to extend the product shelf life to 52 days even when stored at +10±0.5 ºC.

Keywords: salad with meat in mayonnaise, shelf life, sous videpackaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
7055 Hydrogen from Waste Tyres

Authors: Ibrahim F. Elbaba, Paul T. Williams

Abstract:

Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of hydrogen since more than 95% of current production is from fossil fuels. The pyrolysis of waste tyres for the production of liquid fuels, activated carbons and gases has been extensively researched. However, combining pyrolysis with gasification is a novel process that can gasify the gaseous products from pyrolysis. In this paper, an experimental investigation into the production of hydrogen and other gases from the bench scale pyrolysis-gasification of tyres has been investigated. Experiments were carried using a two stage system consisting of pyrolysis of the waste tyres followed by catalytic steam gasification of the evolved gases and vapours in a second reactor. Experiments were conducted at a pyrolysis temperature of 500 °C using Ni/Al2O3 as a catalyst. The results showed that there was a dramatic increase in gas yield and the potential H2 production when the gasification temperature was increased from 600 to 900 oC. Overall, the process showed that high yields of hydrogen can be produced from waste tyres.

Keywords: Catalyst, Hydrogen, Pyrolysis, Gasification, Tyre, Waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
7054 Investigation of Temperature-Dependent Electrical Properties of Tc-CuPc: PCBM Bulk Heterojunction (BHJ) under Dark Conditions

Authors: Shahid M. Khan, Muhammad H. Sayyad

Abstract:

An organic bulk heterojunction (BHJ) was fabricated using a blended film containing Copper (II) tetrakis(4-acumylphenoxy) phthalocyanine (Tc-CuPc) along with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM). Weight ratio between Tc-CuPc and PCBM was 1:1. The electrical properties of Tc-CuPc: PCBM BHJ were examined. Rectifying nature of the BHJ was displayed by current-voltage (I-V) curves, recorded in dark and at various temperatures. At low voltages, conduction was ohmic succeeded by space-charge limiting current (SCLC) conduction at higher voltages in which exponential trap distribution was dominant. Series resistance, shunt resistance, ideality factor, effective barrier height and mobility at room temperature were found to be 526 4, 482 k4, 3.7, 0.17 eV and 2×10-7 cm2V-1s-1 respectively. Temperature effect towards different BHJ parameters was observed under dark condition.

Keywords: Bulk heterojunction, PCBM, phthalocyanine, spin coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
7053 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching

Authors: Ly. Benbahouche

Abstract:

Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics.

The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments.

The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device).

Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.

Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587
7052 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Authors: Vineet Srivastava, Pulak M. Pandey

Abstract:

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367