Search results for: computational stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2361

Search results for: computational stability

1551 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
1550 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
1549 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
1548 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
1547 The Effect of Stone Column (Nailing and Geogrid) on Stability of Expansive Clay

Authors: Komeil Valipourian, Mohsen Ramezan Shirazi, Orod Zarrin Kafsh

Abstract:

By enhancing the applicatıon of grounds for establishment and due to the lack of appropriate sites, engineers attempt to seek out a new method to reduce the weakness of soils. İn aspect of economic situation, various ways have been used to decrease the weak grounds. Because of the rapid development of infrastructural facilities, spreading the construction operation is an obligation. Furthermore, in various sites with the really bad soil situation, engineers have considered obvious problems. One of the most essential ways for developing the weak soils is stone column. Obviously, the method was introduced in France in 1830 to improve a native soil initially. Stone columns have an expanding range of usage in different rough foundation sites all over the world to increase the bearing capacity, to reduce the whole and differential settlements, to enhance the rate of consolidation, to stabilize slopes stability of embankments and to increase the liquefaction resistance as well. A recent procedure called installing vertical nails along the round stone columns in order to make better the performance of considered columns is offered. Moreover, thanks to the enhancing the nail diameter, number and embedment nail depth, the positive points of vertical circumferential nails increases. Based on the result of this study, load caring capacity will be develop with enhancing the length and the power of reinforcements in vertical encasement stone column (CESC). In this study, the main purpose is comparing two methods of stone columns (installed a nail surrounding the stone columns and using geogrid on clay) for enhancing the bearing capacity, decreasing the whole and various settlements.

Keywords: Bearing Capacity, Clay, Geogrid, Nailing, Settlements, Stone Column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
1546 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
1545 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
1544 Formulation Development and Moiturising Effects of a Topical Cream of Aloe vera Extract

Authors: Akhtar N, Khan BA, Khan MS, Mahmood T, Khan HMS, Iqbal M, Bashir S

Abstract:

This study was designed to formulate, pharmaceutically evaluate a topical skin-care cream (w/o emulsion) of Aloe Vera versus its vehicle (Base) as control and determine their effects on Stratum Corneum (SC) water content and Transepidermal water loss (TEWL). Base containing no extract and a Formulation containing 3% concentrated extract of Aloe Vera was developed by entrapping in the inner aqueous phase of w/o emulsion (cream). Lemon oil was incorporated to improve the odor. Both the Base and Formulation were stored at 8°C ±0.1°C (in refrigerator), 25°C±0.1°C, 40°C±0.1°C and 40°C± 0.1°C with 75% RH (in incubator) for a period of 4 weeks to predict their stability. The evaluation parameters consisted of color, smell, type of emulsion, phase separation, electrical conductivity, centrifugation, liquefaction and pH. Both the Base and Formulation were applied to the cheeks of 21 healthy human volunteers for a period of 8 weeks Stratum corneum (SC) water content and Transepidermal water loss (TEWL) were monitored every week to measure any effect produced by these topical creams. The expected organoleptic stability of creams was achieved from 4 weeks in-vitro study period. Odor was disappeared with the passage of time due to volatilization of lemon oil. Both the Base and Formulation produced significant (p≤0.05) changes in TEWL with respect to time. SC water content was significantly (p≤0.05) increased by the Formulation while the Base has insignificant (p 0.05) effects on SC water content. The newly formulated cream of Aloe Vera, applied is suitable for improvement and quantitative monitoring of skin hydration level (SC water content/ moisturizing effects) and reducing TEWL in people with dry skin.

Keywords: Aloe Vera; Skin; Stratum corneum (SC) water content and Transepidermal water loss (TEWL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7912
1543 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal

Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha

Abstract:

Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.

Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
1542 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method

Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian

Abstract:

This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.

Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1541 Periodic Oscillations in a Delay Population Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.

Keywords: Population model, Stability, Hopf bifurcation, Delay, Global Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1540 Ratio-Dependent Food Chain Models with Three Trophic Levels

Authors: R. Kara, M. Can

Abstract:

In this paper we study a food chain model with three trophic levels and Michaelis-Menten type ratio-dependent functional response. Distinctive feature of this model is the sensitive dependence of the dynamical behavior on the initial populations and parameters of the real world. The stability of the equilibrium points are also investigated.

Keywords: Food chain, Ratio dependent models, Three level models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
1539 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
1538 Continuous Threshold Prey Harvesting in Predator-Prey Models

Authors: Jonathan Bohn, Jorge Rebaza, Kaitlin Speer

Abstract:

The dynamics of a predator-prey model with continuous threshold policy harvesting functions on the prey is studied. Theoretical and numerical methods are used to investigate boundedness of solutions, existence of bionomic equilibria, and the stability properties of coexistence equilibrium points and periodic orbits. Several bifurcations as well as some heteroclinic orbits are computed.

Keywords: Predator-prey models, threshold harvesting, dynamicalsystems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
1537 Sensorless Control of Induction Motor: Design and Stability Analysis

Authors: Nadia Bensiali, Erik Etien, Amar Omeiri, Gerard Champenois

Abstract:

Adaptive observers used in sensorless control of induction motors suffer from instability especally in regenerating mode. In this paper, an optimal feed back gain design is proposed, it can reduce the instability region in the torque speed plane .

Keywords: Induction motor drive, adaptive observer, regenerating mode, stabilizing design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1536 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, Constricted Artery, Computational Fluid Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1535 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
1534 Hierarchies Based On the Number of Cooperating Systems of Finite Automata on Four-Dimensional Input Tapes

Authors: Makoto Sakamoto, Yasuo Uchida, Makoto Nagatomo, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani

Abstract:

In theoretical computer science, the Turing machine has played a number of important roles in understanding and exploiting basic concepts and mechanisms in computing and information processing [20]. It is a simple mathematical model of computers [9]. After that, M.Blum and C.Hewitt first proposed two-dimensional automata as a computational model of two-dimensional pattern processing, and investigated their pattern recognition abilities in 1967 [7]. Since then, a lot of researchers in this field have been investigating many properties about automata on a two- or three-dimensional tape. On the other hand, the question of whether processing fourdimensional digital patterns is much more difficult than two- or threedimensional ones is of great interest from the theoretical and practical standpoints. Thus, the study of four-dimensional automata as a computasional model of four-dimensional pattern processing has been meaningful [8]-[19],[21]. This paper introduces a cooperating system of four-dimensional finite automata as one model of four-dimensional automata. A cooperating system of four-dimensional finite automata consists of a finite number of four-dimensional finite automata and a four-dimensional input tape where these finite automata work independently (in parallel). Those finite automata whose input heads scan the same cell of the input tape can communicate with each other, that is, every finite automaton is allowed to know the internal states of other finite automata on the same cell it is scanning at the moment. In this paper, we mainly investigate some accepting powers of a cooperating system of eight- or seven-way four-dimensional finite automata. The seven-way four-dimensional finite automaton is an eight-way four-dimensional finite automaton whose input head can move east, west, south, north, up, down, or in the fu-ture, but not in the past on a four-dimensional input tape.

Keywords: computational complexity, cooperating system, finite automaton, four-dimension, hierarchy, multihead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
1533 Survivability of Verhulst-free Populations under Mutation Accumulation

Authors: Chrysline Margus N. Piñol, Jenifer DP. De Maligaya, Ahl G. Balitaon

Abstract:

Stable nonzero populations without random deaths caused by the Verhulst factor (Verhulst-free) are a rarity. Majority either grow without bounds or die of excessive harmful mutations. To delay the accumulation of bad genes or diseases, a new environmental parameter Γ is introduced in the simulation. Current results demonstrate that stability may be achieved by setting Γ = 0.1. These steady states approach a maximum size that scales inversely with reproduction age.

Keywords: Aging, mutation accumulation, population dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
1532 Temporal Variation of Surface Runoff and Inter-Rill Erosion in Different Soil Textures of a Semi-Arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Inter-rill erosion is the detachment and transfer of soil particles between the rills which occurs due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of inter-rill erosion during a rainfall event and the effect of soil properties on it can help develop better methods to soil conservation in the hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and inter-rill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. Soil properties including particle size distribution, aggregate stability, bulk density, exchangeable sodium percentages (ESP) and hydraulic conductivity (Ks) were determined in the soil samples. Correlation and regression analysis was done to determine the effect of soil properties on runoff and inter-rill erosion. Results indicated that the study soils have lower both organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher ESP. Runoff production and soil loss did not occur in sand texture, which was associated with higher infiltration and drainage rates. A strong relationship was found between inter-rill erosion and surface runoff (R2 = 0.75, p < 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, Ks, lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more inter-rill erosion. In the soils, surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: Erosion plot, rainfall simulator, soil properties, surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
1531 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: Polycaprolactone, organoclay, nanocomposite, montmorillonite, electrical conductivity, activation energy, exfoliation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
1530 Periodic Orbits in a Delayed Nicholson's Blowflies Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a delayed Nicholson,s blowflies model with a linear harvesting term is investigated. Regarding the delay as a bifurcation parameter, we show that Hopf bifurcation will occur when the delay crosses a critical value. Numerical simulations supporting the theoretical findings are carried out.

Keywords: Nicholson's blowflies model, Stability, Hopf bifurcation, Delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
1529 Frequency Response of Complex Systems with Localized Nonlinearities

Authors: E. Menga, S. Hernandez

Abstract:

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1528 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study

Authors: Seyed Sina Khamesi, Rana Rafiei

Abstract:

The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.

Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309
1527 Impact of Quality Assurance Mechanisms on the Work Efficiency of Staff in the Educational Space of Georgia

Authors: B. Gechbaia, K. Goletiani, G. Gabedava, N. Mikeltadze

Abstract:

At this stage, Georgia is a country which is actively involved in the European integration process, for which the primary priority is effective integration in the European education system. The modern Georgian higher education system is the process of establishing a new sociocultural reality, whose main priorities are determined by the Quality System as a continuous cycle of planning, implementation, checking and acting. Obviously, in this situation, the issue of management of education institutions comes out in the foreground, since the proper planning and implementation of personnel management processes is one of the main determinants of the company's performance. At the same time, one of the most important factors is the psychological comfort of the personnel, ensuring their protection and efficiency of stress management policy.

The purpose of this research is to determine how intensely the relationship is between the psychological comfort of the personnel and the efficiency of the quality system in the institution as the quality assurance mechanisms of educational institutions affect the stability of personnel, prevention and management of the stressful situation. The research was carried out within the framework of the Internal Grant Project «The Role of Organizational Culture in the Process of Settlement of Management of Stress and Conflict, Georgian Reality and European Experience » of the Batumi Navigation Teaching University, based on the analysis of the survey results of target groups. The small-scale research conducted by us has revealed that the introduction of quality assurance system and its active implementation increased the quality of management of Georgian educational institutions, increased the level of universal engagement in internal and external processes and as a result, it has improved the quality of education as well as social and psychological comfort indicators of the society.

Keywords: Quality assurance, effective management, stability of personnel, psychological comfort, stress management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
1526 A Research about How the Dividend Policy Influences the Enterprise Value on the Condition of Consecutive Cash Payoff

Authors: Chengxuan Geng, Chenxi Liu

Abstract:

this article conducts a research about the relationship between cash dividend policy and enterprise value based on the data coming from the A-share listed companies over period 2005-2009. In conclusion, the enterprise value has a negative correlation with the incremental and the degressive cash dividend per share, and has a positive correlation with the stable cash dividend per share.

Keywords: Cash dividend policy, enterprise value, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
1525 Biologically Inspired Artificial Neural Cortex Architecture and its Formalism

Authors: Alexei M. Mikhailov

Abstract:

The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?

Keywords: Cortex, pattern recognition, artificial neural cortex, computational biology, brain and neural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1524 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System

Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal

Abstract:

The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.

Keywords: Cellulase, hydrolysis, lignocellulose, pretreatment, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
1523 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
1522 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: Eigenvalue analysis, mathematical model, power system stability, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589