
 

 

  
    Abstract—The paper attempts to elucidate the columnar structure 
of the cortex by answering the following questions. (1) Why the 
cortical neurons with similar interests tend to be vertically arrayed 
forming what is known as cortical columns? (2) How to describe the 
cortex as a whole in concise mathematical terms? (3) How to design 
efficient digital models of the cortex? 
 

Keywords—Cortex, pattern recognition, artificial neural cortex, 
computational biology, brain and neural engineering.  

I. INTRODUCTION 
HE cortex (neocortex) is a 2 mm thin, 0.5 m x 0.5 m sheet 
made of pyramidal neurons, which is wrinkled together to 

fit the small volume of the skull. Cortexes of monkeys, 
dolphins, cats, dog and other animals are less or not wrinkled 
because animals’ cortexes are featured by a much smaller area 
size. The first evidence suggesting a vertical arrangement of 
the cortical sheet of neurons was provided by von Economo in 
1929 [1]. The term column still invites some debate in the 
neuroscience community. Their size, function, and importance 
are disputed. However, the reason one can think in general 
terms of a columnar architecture is that the vertically aligned 
cortical neurons tend to respond to the same stimulus [2]. 
Another reason we stems from how the cortex forms. In an 
embryo, single precursor cells migrate from an inner brain 
cavity to where the cortex takes shape. Each of these cells 
divides to create about one hundred neurons, called a (micro) 
column. Hence, the term column can refer to general vertical 
connectivity or to specific groups of cells from the same 
progenitor [3]. A strong argument that supports a columnar 
architecture of the cortex is presented in [4]. Next part of the 
paper considers the following question. Why individual 
columns respond to different feature patterns if scientific 
evidence suggests that each column is interested only in a 
single column-specific feature? The answer to this question is 
related to real-world patterns that share common features. 
Also, it is argued that emergence of columnar architecture was 
stimulated by the existence of real world patterns with 
common features. Next, a rigorous mathematical definition of 
an index is offered and it is shown that indexing structures 
provide extremely efficient solutions to computationally 
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complex search problems. It is argued that the existence of 
such an effective solution is a mathematical reason for the 
emergence of columnar indexing structures. An artificial 
neural cortex with a hierarchical indexing architecture is 
considered, and, finally, an example of an artificial neural 
cortex-based application is provided.  

II.   METHODS AND MATERIALS 

A. Common Features of Patterns 
   One known instance of cortical feature columns is the visual 
cortex’s orientation columns, whose neurons respond to lines 
tilted at a particular angle. The neurons in one column will 
respond best to boundaries tilted at 25°, those in another to 
35°, etc. [5]. In the olfactory cortex, a huge family of genes 
encodes proteins called olfactory receptors [6]. Individual 
olfactory sensory neurons typically express just one of those 
genes. Also, each olfactory sensory neuron is hardwired via its 
axon to a single column in the olfactory cortex. Hence, 
individual olfactory columns are linked to individual features 
of odors. In the primary auditory cortex, its individual 
columns respond to particular frequencies. Individual columns 
of the somatosensory cortex respond to individual whiskers, 
etc. These examples suggest that individual cortical columns 
respond to their own individual features. 
   But, on the other hand, individual columns of cortical 
regions also respond to different feature patterns. For instance, 
a single receptor protein appears to bind (recognize) many 
different odors [6]. It is possible because, rather than having 
sensory neurons that respond selectively to odors, that is, 
complex feature patterns, individual cells respond (via their 
receptors} to sub-molecular features of the volatile chemicals 
coming from those objects. Therefore, any given olfactory 
sensory neuron will respond to many different odors as long as 
they share a common feature. The olfactory cortex then 
looks at the combination of sensory neurons activated at any 
given time and interprets that pattern; the cortical interpre-
tation is what is perceived as smell. In the auditory cortex, 
audio frequencies serve as common features of spoken words 
that are perceived via the auditory sense, whereas the words 
serve as common features of sentences. All wines share a 
specific functional group such as alcohol; both the sun and the 
character “o” are featured by the same circular shape, and so 
on. 
   It is know that almost all cortical regions show a striking 
structural similarity. So, it wouldn’t be surprising to find out 
that the same working pattern holds not just for primary 
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cortical regions, but for higher regions as well. Indeed, the 
authors in [7] replaced a fragment of a monkey skull with a 
piece of glass and a camera attached to it to see the 
inferotemporal region and how its spots light up when 
monkey is looking at an object (Fig.1). It was discovered that  
“…some spots activated by one object were also activated by 
other objects. Overlap of spots was observed when the feature 
was common among the objects.” 
 

 
Fig. 1 Part of the Inferotemporal Cortical Region of a Monkey 

(reproduced from [1]) 

 
In Fig. 1, the common feature of the pictures 1-3 is the cat’s 

head contour. Hence, the yellow circles represent the activity 
of the inferotemporal spots that respond to this complex 
feature. 

    B.  Cortical Pattern Recognition 
It was suggested in [8] that when the neurons fire, their 

synapses get strengthened. A relevant phenomenon is a long-
term potentiation [9], which is a long-lasting improvement in 
communication between two neurons that results from 
stimulating them simultaneously. Since neurons communicate 
via chemical synapses, and because memories are believed to 
be stored within these synapses, long-term potentiation is 
widely considered one of the major cellular mechanisms that 
underlies learning and memory [9]. Hence, when an external 
input pattern activates a subset of neurons and the activation 
pattern persists for a sufficient time interval, one can expect 
that a number of new connections will emerge. Now, it seems 
reasonable to argue that a columnar arrangement is imposed 
on cortical neurons by real world patterns because they often 
share common features. As an individual cortical pyramidal 
neuron cannot develop more than 10,000 synapses ([2]), it 
cannot participate in more than 10,000 combinations of active 
neurons that represent/identify a set of 10,000 real worlds 
objects  with common features, which is, probably, not 
sufficient for a life time of an individual. By lining up neurons 
in a 100 cell strong column (this number holds throughout the 
cortical surface [5]), the cortex can identify million-large 
groups of patterns with common features. There also exists a 
mathematical justification that shows a columnar arrangement 
to be a reasonable solution to search problems of 

combinatorial complexity in the domain of real-world feature 
patterns.  

C.  Mathematics of Indexing 
Indexing techniques play a prominent role in information 

technologies. An excellent example is the Google search 
engine, which responds almost instantaneously no matter how 
many documents are published on the web and which is based 
on the Google’s index [10]. Here is an index definition from 
Grolier Multimedia Encyclopedia. “An index is a list of the 
subjects contained in a book, or other compilation of recorded 
information. Index entries have two parts: a heading and a 
locator. Index headings identify the subjects, usually in a word 
or phrase describing them. In back-of-the-book indexes the 
locators are usually page numbers. The goal of an index is to 
provide quick, easy, and unambiguous access to the 
information, even though information on a specific topic may 
be scattered throughout the indexed material.” 
    A rigorous mathematical definition of an index is suggested 
in this paper as follows. Let C be a collection of sets {x}y, y Є 
Y, where Y is the set of labels or names. The index is defined 
as an inverse collection C-1 of sets {y}x. The inverse 
collection is composed of the sets, whose elements Y are 
labels y of sets {x}y and whose names are elements of sets 
{x}y, such that  
                                 x Є {x}y   y Є {y}x 
   D.  Example 1 
   Let   z = {a, c},   y = {b, c, d}, u = {a, b}, x = {a, d},          v 
= {d}   be a collection of sets. Then the inverse collection is  
 
          a = {z, u, x},   b = {y, u}, c = {y, z}, d = {y, x, v} 
 
These collections are depicted as the two following vertical 
arrangements 
  
    d                                         x          v 
c  c  b  d                                  u  u  y  x 
a  b  a  a  d                              z  y  z  y 
──────                               ─────    
z  y  u  x  v                              a  b  c  d 
 
In the left-hand side arrangement, the columns in the 
numerator contain original sets’ elements and their subscripts 
are the corresponding sets’ labels. On the right-hand side, the 
columns in the numerator contain sets’ labels and their 
subscripts are the elements of the original sets. It can be 
shown that for any collection of sets its inverse collection does 
always exists, which means that any collection of sets can be 
indexed.  
    Indexes spell extreme “computational” power. Let C be a 
collection of sets {x}y, y Є Y and A be an arbitrary set. Next, 
the best match for A in the collection C is sought. In this case 
a direct approach would require comparing A to all sets from 
the collection C. If the average number of elements in sets 
from C is N then, on average, N2 operations would be needed 
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to compare A to a set from C. If the number of sets in a 
collection is N then finding a best match would require N3 
operation or N2|C| operations, where |C| is the cardinality of C. 
It will be shown that by indexing a collection of sets the 
computational complexity of the search for the best match 
shrinks to just O(N). 

   E.  Example 2 

   A book is a collection of pages {w}p, p =1,…N, where N is 
the total number of pages  and p is the page number. One 
wants to find out where, for instance, the words life and cycle 
appear in one context, i.e., in the same paragraph. Performing 
a full search, one has to keep on turning pages all through the 
book. But, it makes a perfect sense to index this collection of 
pages first, thus, creating the index {p}w, w =1,…W, where w 
is the word’s identity and W is the set of all words found in 
this book, for instance, 
 
1 Behaviorism              15, 27 
2 Cats                           17, 89, 131,169, 189, 201, 286 
3 Cycle                         17, 21, 32, 33, 40, 46 
4 Learning                    66, 78, 98, 118 
5 Life                            34, 46, 55, 89, 101, 121 
6 Memory                     22, 66, 67, 68, 70, 186, 286 
7 Monkey                     27, 33, 111, 225, 233 
………………..       
 
In this case, the index points directly to the columns 3 and 5. 
All that remains to be done now is to intersect the columns 
{34, 46, 55, 89, 101, 121} and {17, 21, 32, 33, 40, 46}, which 
would yield the paragraph number 46. The operation of 
intersection still requires O(H2), where H is the average length 
or height of the column. But, it is possible to cut down even 
this number by sequentially reading the numbers in the 
selected columns and calculating the frequencies of pages. For 
this example, the pages 17, 21, 32, 33, 34, 40, 55, 89, 101, 
121 occur one time only, whereas the winning page number 
46 occurs 2 times. This few-selected-columns ascending 
procedure amounts to 2*H operations only. What is more, it is 
possible to design the system in such a way that the amount of 
stored patterns will not affect the order of computational 
complexity, provided that a sufficient memory is available or 
feature patterns are ordered sets as it will be discussed later. 
These conditions help keep the average columnar height H at 
bay, which is practically feasible by controlling dynamical 
ranges of features. 

    F.  Artificial Neural Cortex  
   Real-world patterns are represented by long sequences of 
features like pixels, audio frequencies, etc. Artificial neural 
cortex (ANC) is a memory that takes in long input patterns. 
However, unlike standard content-addressable memory 
(CAM), ANC is not a parallel memory device. This is because 
CAM is a power-greedy memory as all its paths (circuits) are 
always activate due to CAM’s internal parallelism. CAM’s 
applicability is severely limited by its power consumption. 

Note: Had the cortex been a massive parallel “device”, it 
would “shine” like a lamp all the time. But, brain imaging 

techniques show that only a small percentage of spots of total 
cortical area are simultaneously active at any given time. The 
only known neurological case when almost the whole brain 
becomes active is the epileptic seizure [12]. 

The other fundamental memory architecture is the random 
access memory (RAM), which is a fast, energy-efficient 
memory, where an input address points directly to the result 
and activates one path only. However, ANC is not a RAM-
like device. This is because any RAM faces an exponential 
explosion of its addressable space with the growing length N 
of its addresses. Already at N as low as 300, the size 2300 of 
the needed address space will be greater than the number of 
hydrogen atoms in the Universe ([11]), which is around 1080 
(1080<2300). A feasible solution to this problem is to cut long 
feature patterns into, say, N 32-bit pieces. Such approach 
causes an overlap of features and emergence of pattern 
columns, thus leading, as discussed, to a pattern index or, in 
other words, to a multi-addressable memory.  

ANC is, basically, a multi-addressable memory, which has 
been used for various applications since 2001 [13]. ANC 
comprises a hierarchy of regions, each region being an index. 
All indexing modules are featured by the same columnar 
architecture. In 2007, US patent under the name “Neural 
Cortex” was granted for a design of the indexing hardware 
module that doesn’t make use of microprocessors [14]. An 
example of ANC [15] hierarchy is as follows. The first level is 
an index of feature patterns. The inputs to the first level are 
low-level features such as image pixels or other features that 
depend on particular applications. The outputs of the first 
level are feature names, which, in turn, serve as inputs to the 
next level index. If the first level is an index of lines then its 
outputs are the linear clusters of pixels. 

The second level can be, for instance, an index of 
connected shapes, whose inputs are the names of linear pixel 
clusters. If the third level takes shapes’ names as its inputs 
then the outputs of the third level are the names of scenes of 
shapes, and so on. This hierarchical indexing structure 
endeavors the system with generalization capabilities. For 
instance, it doesn’t matter whether the input is a square or a 
rectangle shape, whether it is skewed, scaled or rotated as long 
as shape’s topology is preserved. 

Each level of ANC is designed to solve the following 
search problem. Let F be a universal feature set (set of all 
distinct features). Given an unknown feature set {f} from F 
and a collection C = {f}p, p Є P, of feature patterns, find a set 
{f}p that best matches the input {f}. A direct search will 
amount to O(N2|C|), where N is the average pattern length (for 
real-world patterns, |C|>>N). However, pattern indexing 
makes an intersection-based search possible 
 

                                            ∩ {p}f                                    (1)              
                                          f Є{f}      
 
Here, the columns of the index contain names of patterns, 
whereas the subscripts of the columns are the features. 
Clearly, the single element in the above intersection is a name 
of the best match as it shares N features with the unknown 
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input. Note that only N columns need to be accessed, where N 
is the number of features of the unknown input pattern. By 
intersecting a subset of the columns of the index that are 
selected by the input pattern, it is possible to drastically reduce 
the computational complexity of the search to just N*H, 
where H is the average height of columns of the index.  
   The above discussion implies that, if H is a constant, 
indexing offers an O(N)-solution to the best match search 
problem. 
   In practice, a set-theoretical intersection is a bad tool as 
noise would render it empty most times. But, one can evaluate 
(1) with the use of a name frequency function, that is, by 
looking for the name that occurs in the columns with 
subscripts {f} most frequently.  
   In case of partially ordered feature sets, a practical way to 
keep the height H at bay is by combining ordered features into 
pairs, triplets, etc., thus, increasing the number of columns, 
which, in turn, reduces the average value of H.   Another trick 
of the trade is applicable to fully ordered feature sets {f} = {f1, 
f2,…, fN}. In this case, the single index {p}f, f Є F, is replaced 
with N indexes, such that the name contents of the first index 
is created with the use of the feature f1 only, name contents of 
the second index is created with the use of the feature f2 , etc. 
Clearly, this decreases the height H by the factor of N.    
   Note: In ANC, the columns are containers of names. It is 
possible to speculate that, in the biological cortex, the 
horizontal synaptic links to/from feature columns that jointly 
respond to a learnt pattern play role of patterns’ names (the 
same name-concept was suggested in [3]). 

G.  Image-based Retrieval of Trademarks 
In this section, an application of ANC to a problem of 

image-based identification of trademarks is considered. The 
test database contains around 1100 black and white images of 
trademarks. Some trademarks are shown in Fig. 2.  

The following features were chosen to represent the 
trademarks’ shapes. For each shape pixel, a circular run-length 
code with the radius 8 is obtained on a feature extraction 
stage. Fig. 3 shows two local areas with corresponding run-
length features, each represented by an ordered set of integers. 
The size of this set depends on the neighborhood of the pixel. 
Internal shape pixels, where no gradient change takes place 
are ignored. A feature collection representing each trademark 
is an unordered feature set whose size changes from shape to 
shape. Also, identification of trademarks by their fragments 
may change the order of a shape’s features. For example, for a 
set of three features: 
 
f1 = 24, 1, 33, 3 
f2 = 12, 2, 10, 24, 1, 33, 3 
f3 = 13, 10, 15, 20 
 
a two-feature subset may look like 
 
f1 = 12, 2, 10, 24, 1, 33, 3 
f2 = 24, 1, 33, 3 

 
 

 
 

Fig. 2 Trademarks 
 

 
 

Fig. 3 Local Areas and their Features 
 

Hence, this formal setup of the problem doesn’t follow a 
standard pattern recognition paradigm, where objects are 
represented by vectors and problems are solved in an N-
dimensional space. In the trademarks application, the number 
of shape representing features changes from 15 (simple 
shapes) to 7000 (complex shapes). 
 

 
 

Fig. 4 Two-Level ANC 
 

For this application, a two-level ANC was used, whose first 
level is a feature index and second level is a shape index (Fig. 
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4). The feature index comprises 16 regions: it was assumed 
that the number of integers in any feature is limited by 16. 
Each region is represented by 64 columns because the 
maximum positive value any integer can take is limited by 64 
(circumference length). The 1st integer value in the feature is 
used as a subscript of the column of the 1st region, the 2nd 
integer value - as a subscript of the column of the 2nd region, 
etc. For a K integers feature, its feature name (names are 
generated sequentially) is to be written in K corresponding 
columns if and only if the maximum of the feature names’ 
frequency response is less then K. Otherwise, the feature is 
identified and its name n1 is used as the subscript to the shape 
index that stores trademarks identities in its columns. The 
shape index comprises only one region because the set of 
feature names representing each given shape is unordered. 
Shape names’ frequency response is elicited by a sequence of 
feature names (length L) representing the input shape. (For 
shapes in Fig. 2, the length ranges from L=1546 to L=6636). 
The experiment showed that a 90% threshold of the shape 
names’ frequency response ensures 100% identification of all 
1100 trademarks (the input shape is identified if the maximum 
frequency response exceeds 90% of L). There is no 
training/testing watershed in this two-level indexing structure. 
New shapes and their partially new features are memorized as 
the system sequentially learns the shapes. Identification cycle 
takes 1-2 seconds on a PC, where 98% of processing time is 
spent on feature extraction, and shapes/features identification 
time (2% of processing time) only marginally increases with 
the database size. 

III. RESULTS 
Columnar arrangement of cortical neurons is an efficient 

(time and energy saving) solution to search problems of 
combinatorial complexity in the domain of real-world feature 
patterns.  

IV. CONCLUSION 
The cortex is, probably, a hierarchical biological index of 

real-world patterns. The mathematical reason for the indexing 
architecture of the cortex stems from the fact that indexing 
offers an O(N)-divide-and-conquer solution to O(N3)+ 
complexity of search problems in the domain of long real-
world feature patterns.  
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