Search results for: Network Security.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: Network Security.

2712 Design of an Authentication Protocol for Secure Electronic Seals

Authors: Seongsoo Park, Mun-Kyu Lee, Dong Kyue Kim, Kunsoo Park, Yousung Kang, Sokjoon Lee, Howon Kim, Kyoil Chung

Abstract:

Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.

Keywords: Authentication, Container Security, Electronic seal, RFID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2711 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
2710 A Software of Intrusion Detection Mechanism for Virtual Platforms

Authors: Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

Security is an interesting and significance issue for popular virtual platforms, such as virtualization cluster and cloud platforms. Virtualization is the powerful technology for cloud computing services, there are a lot of benefits by using virtual machine tools which be called hypervisors, such as it can quickly deploy all kinds of virtual Operating Systems in single platform, able to control all virtual system resources effectively, cost down for system platform deployment, ability of customization, high elasticity and high reliability. However, some important security problems need to take care and resolved in virtual platforms that include terrible viruses, evil programs, illegal operations and intrusion behavior. In this paper, we present useful Intrusion Detection Mechanism (IDM) software that not only can auto to analyze all system-s operations with the accounting journal database, but also is able to monitor the system-s state for virtual platforms.

Keywords: security, cluster, cloud, virtualization, virtual machine, virus, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
2709 Impact of Terrorism as an Asymmetrical Threat on the State's Conventional Security Forces

Authors: Igor Pejic

Abstract:

The main focus of this research will be on analyzing correlative links between terrorism as an asymmetrical threat and the consequences it leaves on conventional security forces. The methodology behind the research will include qualitative research methods focusing on comparative analysis of books, scientific papers, documents and other sources, in order to deduce, explore and formulate the results of the research. With the coming of the 21st century and the rising multi-polar, new world threats quickly emerged. The realistic approach in international relations deems that relations among nations are in a constant state of anarchy since there are no definitive rules and the distribution of power varies widely. International relations are further characterized by egoistic and self-orientated human nature, anarchy or absence of a higher government, security and lack of morality. The asymmetry of power is also reflected on countries' security capabilities and its abilities to project power. With the coming of the new millennia and the rising multi-polar world order, the asymmetry of power can be also added as an important trait of the global society which consequently brought new threats. Among various others, terrorism is probably the most well-known, well-based and well-spread asymmetric threat. In today's global political arena, terrorism is used by state and non-state actors to fulfill their political agendas. Terrorism is used as an all-inclusive tool for regime change, subversion or a revolution. Although the nature of terrorist groups is somewhat inconsistent, terrorism as a security and social phenomenon has a one constant which is reflected in its political dimension. The state's security apparatus, which was embodied in the form of conventional armed forces, is now becoming fragile, unable to tackle new threats and to a certain extent outdated. Conventional security forces were designed to defend or engage an exterior threat which is more or less symmetric and visible. On the other hand, terrorism as an asymmetrical threat is a part of hybrid, special or asymmetric warfare in which specialized units, institutions or facilities represent the primary pillars of security. In today's global society, terrorism is probably the most acute problem which can paralyze entire countries and their political systems. This problem, however, cannot be engaged on an open field of battle, but rather it requires a different approach in which conventional armed forces cannot be used traditionally and their role must be adjusted. The research will try to shed light on the phenomena of modern day terrorism and to prove its correlation with the state conventional armed forces. States are obliged to adjust their security apparatus to the new realism of global society and terrorism as an asymmetrical threat which is a side-product of the unbalanced world.

Keywords: Asymmetrical warfare, conventional forces, security, terrorism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
2708 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: Ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
2707 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

Authors: S. Jadid, S. Jalilzadeh

Abstract:

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Keywords: composite indices, transient stability, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2706 Location Management in Cellular Networks

Authors: Bhavneet Sidhu, Hardeep Singh

Abstract:

Cellular networks provide voice and data services to the users with mobility. To deliver services to the mobile users, the cellular network is capable of tracking the locations of the users, and allowing user movement during the conversations. These capabilities are achieved by the location management. Location management in mobile communication systems is concerned with those network functions necessary to allow the users to be reached wherever they are in the network coverage area. In a cellular network, a service coverage area is divided into smaller areas of hexagonal shape, referred to as cells. The cellular concept was introduced to reuse the radio frequency. Continued expansion of cellular networks, coupled with an increasingly restricted mobile spectrum, has established the reduction of communication overhead as a highly important issue. Much of this traffic is used in determining the precise location of individual users when relaying calls, with the field of location management aiming to reduce this overhead through prediction of user location. This paper describes and compares various location management schemes in the cellular networks.

Keywords: Cellular Networks, Location Area, MobilityManagement, Paging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4029
2705 A Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell

Authors: M. Sedighizadeh, M. Rezaei, V. Najmi

Abstract:

The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn-t lead to acceptable responses because of time- change, long- hysteresis, uncertainty, strong- coupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been designed to control the voltage of at the presence of fluctuations of temperature. The results of implementation of this designed NN Predictive controller on a dynamic electrochemical model of a small size 5 KW, PEM fuel cell have been simulated by MATLAB/SIMULINK.

Keywords: PEMFC, Neural Network, Predictive Control..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
2704 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

Authors: Wenji Zhu, Yigang He

Abstract:

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
2703 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Authors: Jolly Shah, S.S.Rattan, B.C.Nakra

Abstract:

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4371
2702 Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach

Authors: Venus Marza, Amin Seyyedi, Luiz Fernando Capretz

Abstract:

Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.

Keywords: Artificial Neural Network, Fuzzy Logic, Neuro-Fuzzy, Software Estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
2701 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2700 Dynamic Admission Control Based on Effective Demand for Next Generation Wireless Networks

Authors: Somenath Mukherjee, Rajdeep Ray, Raj Kumar Samanta, Mofazzal H. Khondekar, Gautam Sanyal

Abstract:

In next generation wireless networks (i.e., 4G and beyond), one of the main objectives is to ensure highest level of customer satisfaction in terms of data transfer speed, decrease in cost and delay, non-rejection and no drop of calls, availability of ‘always-on’ connectivity and services, continuity of connected services, hastle-free roaming in addition to the convenience of use of network services from anywhere and anytime. To take care of these requirements effectively, internet service providers (ISPs) and network planners have to go for major capacity enhancement of network resources and at the same time these resources are to be used effectively and efficiently to reduce cost and to increase revenue. In this work, the effective bandwidth available in a Mobile Switching Center (MSC) of a wireless network providing multi-class multimedia services is analyzed. Bandwidth requirement of the users for a customized Quality of Service (QoS) is estimated. The findings of the QoS estimation are applied for the capacity planning and admission control of the multi-class traffic flows coming into the MSC.

Keywords: Next generation wireless network, mobile switching center, multi-class traffic, quality of service, admission control, effective bandwidth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
2699 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: Cloud storage security, sharing storage, attributes, Hash algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
2698 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection

Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson

Abstract:

A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.

Keywords: Image processing, artificial neural network, anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
2697 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.

The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
2696 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO

Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri

Abstract:

This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.

Keywords: DPSO, TEP, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
2695 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –

Authors: Reinhold Decker, Christian Holsing, Sascha Lerke

Abstract:

This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.

Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
2694 Hubs as Catalysts for Geospatial Communication in Kinship Networks

Authors: Sameer Kumar, Jariah Mohd. Jan

Abstract:

Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.

Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
2693 Molecular Evolutionary Analysis of Yeast Protein Interaction Network

Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka

Abstract:

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
2692 A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.

Keywords: Cover Image, Finite state sequential machine, Melaymachine, Pixel Mapping Method (PMM), Stego Image, NCUT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
2691 Innovative Power Engineering in a Selected Rural Commune

Authors: Pawel Sowa, Joachim Bargiel

Abstract:

This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.

Keywords: Energy security, power supply reliability, power engineering, mini energy centers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2690 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods

Authors: Huihai Wu, Xiaohui Liu

Abstract:

Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.

Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
2689 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
2688 Recent Trends on Security Constrained Economic Dispatch: A Bibliographic Review

Authors: Shewit Tsegaye, Fekadu Shewarega

Abstract:

This paper presents a survey of articles, books and reports, which articulate the recent trends and aspects of Security Constrained Economic Dispatch (SCED). The period under consideration is 2008 through 2018. This is done to provide an up-to-date review of the recent major advancements in SCED, the state-of-the-art since 2008, identify further challenging developments needed in smarter grids, and indicate ways to address these challenges. This study consists of three areas of interest, which are very important and relevant for articulating the recent trends of SCED. These areas are: (i) SCED of power system with integrated renewable energy sources (IRES), (ii) SCED with post contingency corrective actions and (iii) Artificial intelligence based SCED.

Keywords: Security constrained economic dispatch, SCED of power system with IRES, SCED with post contingency corrective actions, artificial intelligence based SCED, IRES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2687 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand

Authors: S. Areerachakul

Abstract:

Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).

Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
2686 Predicting the Success of Bank Telemarketing Using Artificial Neural Network

Authors: Mokrane Selma

Abstract:

The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.

Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157
2685 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: Quality of experience, quality of service, packet loss probability, network capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
2684 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
2683 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929