Search results for: time temperature superposition.
7694 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility
Authors: He Chao, Zhang Lei, Liu Ran, Li Ang
Abstract:
Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keeps the shrouds in the temperature range from -150°C to +150°C. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.Keywords: Space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20087693 Antioxidant Biosensor Using Microbe
Authors: Dyah Iswantini, Trivadila, Novik Nurhidayat, Waras Nurcholis
Abstract:
The antioxidant compounds are needed for the food, beverages, and pharmaceuticals industry. For this purpose, an appropriate method is required to measure the antioxidant properties in various types of samples. Spectrophotometric method usually used has some weaknesses, including the high price, long sample preparation time, and less sensitivity. Among the alternative methods developed to overcome these weaknesses is antioxidant biosensor based on superoxide dismutase (SOD) enzyme. Therefore, this study was carried out to measure the SOD activity originating from Deinococcus radiodurans and to determine its kinetics properties. Carbon paste electrode modified with ferrocene and immobilized SOD exhibited anode and cathode current peak at potential of +400 and +300mv respectively, in both pure SOD and SOD of D. radiodurans. This indicated that the current generated was from superoxide catalytic dismutation reaction by SOD. Optimum conditions for SOD activity was at pH 9 and temperature of 27.50C for D. radiodurans SOD, and pH 11 and temperature of 200C for pure SOD. Dismutation reaction kinetics of superoxide catalyzed by SOD followed the Lineweaver-Burk kinetics with D. radiodurans SOD KMapp value was smaller than pure SOD. The result showed that D. radiodurans SOD had higher enzyme-substrate affinity and specificity than pure SOD. It concluded that D. radiodurans SOD had a great potential as biological recognition component for antioxidant biosensor.
Keywords: Antioxidant biosensor, Deinococcus radiodurans, enzyme kinetic, superoxide dismutase (SOD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21197692 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model
Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim
Abstract:
Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL’s finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number (Ra = 10^5, and Ra = 10^6 ), Darcy namber (Da = 10^−2, and Da = 10^−3), the modified thermal conductivity ratio (10^−1 ≤ γ ≤ 10^4), the inter-phase heat transfer coefficien (10^−1 ≤ H ≤ 10^3) and the time dependent (0.001 ≤ τ ≤ 0.2). The results presented for values of the governing parameters in terms of streamlines in both fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms of solid in porous layer, and average Nusselt number.
Keywords: Unsteady natural convection, Thermal non-equilibrium model, Darcy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27537691 Detection of Max. Optical Gain by Erbium Doped Fiber Amplifier
Authors: Abdulamgid.T. Bouzed, Suleiman. M. Elhamali
Abstract:
The technical realization of data transmission using glass fiber began after the development of diode laser in year 1962. The erbium doped fiber amplifiers (EDFA's) in high speed networks allow information to be transmitted over longer distances without using of signal amplification repeaters. These kinds of fibers are doped with erbium atoms which have energy levels in its atomic structure for amplifying light at 1550nm. When a carried signal wave at 1550nm enters the erbium fiber, the light stimulates the excited erbium atoms which pumped with laser beam at 980nm as additional light. The wavelength and intensity of the semiconductor lasers depend on the temperature of active zone and the injection current. The present paper shows the effect of the diode lasers temperature and injection current on the optical amplification. From the results of in- and output power one may calculate the max. optical gain by erbium doped fiber amplifier.Keywords: Amplifier, erbium doped fiber, gain, lasers, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21397690 Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study
Authors: Houssam Hijazi, Laurent Cantrel, Jean-François Paul
Abstract:
Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I2 from the surface in the presence of two OH is 1,2 eV.
Keywords: Aerosols, CsI, reactivity, DFT, water adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12817689 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber
Authors: Man Young Kim
Abstract:
The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16347688 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20977687 Universal Qibla and Prayer Time Finder
Authors: M. Z. Ibrahim, M. Z. Norashikin
Abstract:
People nowadays love to travel around the world. Regardless of their location and time, they especially Muslims still need to perform their five times prayer. Normally for travelers, they need to bring maps, compass and for Muslim, they even have to bring Qibla pointer when they travel. It is slightly difficult to determine the Qibla direction and to know the time for each prayer. In this paper we present a new electronic device called Universal Qibla and Prayer Time Finder to locate the Qibla direction and to determine each prayer time based on the current user-s location. This device use PIC microcontroller equipped with digital compass and Global Positioning System (GPS) where it will display the exact Qibla direction and prayer time automatically at any place in the world. This device is reliable, user friendly and accurate in determining the Qibla direction and prayer time.Keywords: Digital compass, embedded system, global position system, prayer time, qibla
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39737686 Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films
Authors: M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki
Abstract:
In this investigation, anatase TiO2 thin films were grown by radio frequency magnetron sputtering on glass substrates at a high sputtering pressure and room temperature. The anatase films were then annealed at 300-600 °C in air for a period of 1 hour. To examine the structure and morphology of the films, X-ray diffraction (XRD) and atomic force microscopy (AFM) methods were used respectively. From X-ray diffraction patterns of the TiO2 films, it was found that the as-deposited film showed some differences compared with the annealed films and the intensities of the peaks of the crystalline phase increased with the increase of annealing temperature. From AFM images, the distinct variations in the morphology of the thin films were also observed. The optical constants were characterized using the transmission spectra of the films obtained by UV-VIS-IR spectrophotometer. Besides, optical thickness of the film deposited at room temperature was calculated and cross-checked by taking a cross-sectional image through SEM. The optical band gaps were evaluated through Tauc model. It was observed that TiO2 films produced at room temperatures exhibited high visible transmittance and transmittance decreased slightly with the increase of annealing temperatures. The films were found to be crystalline having anatase phase. The refractive index of the films was found from 2.31-2.35 in the visible range. The extinction coefficient was nearly zero in the visible range and was found to increase with annealing temperature. The allowed indirect optical band gap of the films was estimated to be in the range from 3.39 to 3.42 eV which showed a small variation. The allowed direct band gap was found to increase from 3.67 to 3.72 eV. The porosity was also found to decrease at a higher annealing temperature making the film compact and dense.Keywords: Titanium dioxide, RF reactive sputtering, Structuralproperties, Surface morphology, Optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36927685 A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames
Authors: Yasaman Tohidi, Shidvash Vakilipour, Saeed Ebadi Tavallaee, Shahin Vakilipoor Takaloo, Hossein Amiri
Abstract:
The numerical modeling is performed to study the effects of N2 addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics. The results indicate that the presence of N2 in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N2 dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity.
Keywords: Swirl diffusion flame, N2 dilution, OpenFOAM, Swirl intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6107684 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials
Authors: Aman Patidar, Dipankar Sarkar, Manish Pal
Abstract:
Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.
Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9047683 Tin (II) Chloride a Suitable Wetting Agent for AA1200 - SiC Composites
Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, A. S. Abdulmunim
Abstract:
SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.
Keywords: Al-SIC, Aluminum, Composites, Intermetallic, Reinforcement, Tensile Strength, Wetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25877682 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition
Authors: M. Akbari, S. Sadodin
Abstract:
In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19807681 A New Algorithm for Solving Isothermal Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver for one-dimensional heat and mass transfer for isothermal carbonization of wood particles. To check the validity of this algorithm, the LBM results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and particle size on the evolution of the local temperature and mass loss inside the wood particle.
Keywords: Lattice Boltzmann Method, pyrolysis, conduction, carbonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16327680 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13
Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar
Abstract:
Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).
Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27617679 The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari
Abstract:
This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.
Keywords: Finite element modeling (FEM), nose radius, cutting force, temperature, titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30107678 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts
Authors: M. Javanmard
Abstract:
This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.
Keywords: Shelled walnut, MAP, quality, storage temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11397677 An Experimental Investigation on the Behavior of Pressure Tube under Symmetrical and Asymmetrical Heating Conditions in an Indian PHWR
Authors: Ashwini K. Yadav, Ravi Kumar, Akhilesh Gupta, P. Majumdar, B. Chatterjee, D. Mukhopadhyay
Abstract:
Thermal behavior of fuel channel under loss of coolant accident (LOCA) is a major concern for nuclear reactor safety. LOCA along with failure of emergency cooling water system (ECC) may leads to mechanical deformations like sagging and ballooning. In order to understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of Indian Pressurized Heavy Water Reactor (IPHWR) under symmetrical and asymmetrical heat-up conditions. For simulating the fully voided scenario, symmetrical heating of pressure was carried out by injecting 13.2 KW (2 % of nominal power) to all the 19 pins and the temperatures of pressure tube, calandria tube and clad tubes were measured. During symmetrical heating the sagging of fuel channel was initiated at 460 °C and the highest temperature attained by PT was 650 °C . The decay heat from clad tubes was dissipated to moderator mainly by radiation and natural convection. The highest temperature of 680 °C was observed over the outer ring of clad tubes of fuel simulator. Again, to simulate partially voided condition, asymmetrical heating of pressure was carried out by supplying 8.0 kW power to upper 8 pins of fuel simulator and temperature profiles were measured. Along the circumference of pressure tube (PT) the highest temperature difference of 320 °C was observed, which highlights the magnitude of thermal stresses under partially voided conditions.
Keywords: LOCA, ECCS, PHWR, ballooning, channel heat-up, pressure tube, calandria tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20017676 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination
Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz
Abstract:
Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.
Keywords: Crystalline TiO2, sonochemical mechanism, sol-gel reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20207675 Sensitivity Analysis of Real-Time Systems
Authors: Benjamin Gorry, Andrew Ireland, Peter King
Abstract:
Verification of real-time software systems can be expensive in terms of time and resources. Testing is the main method of proving correctness but has been shown to be a long and time consuming process. Everyday engineers are usually unwilling to adopt formal approaches to correctness because of the overhead associated with developing their knowledge of such techniques. Performance modelling techniques allow systems to be evaluated with respect to timing constraints. This paper describes PARTES, a framework which guides the extraction of performance models from programs written in an annotated subset of C.Keywords: Performance Modelling, Real-time, SensitivityAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15137674 Circadian Clock and Subjective Time Perception: A Simple Open Source Application for the Analysis of Induced Time Perception in Humans
Authors: Agata M. Kołodziejczyk, Mateusz Harasymczuk, Pierre-Yves Girardin, Lucie Davidová
Abstract:
Subjective time perception implies connection to cognitive functions, attention, memory and awareness, but a little is known about connections with homeostatic states of the body coordinated by circadian clock. In this paper, we present results from experimental study of subjective time perception in volunteers performing physical activity on treadmill in various phases of their circadian rhythms. Subjects were exposed to several time illusions simulated by programmed timing systems. This study brings better understanding for further improvement of of work quality in isolated areas.
Keywords: Biological clock, light, time illusions, treadmill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15247673 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability
Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim
Abstract:
Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.Keywords: Fast vs slow BTI, Fast wafer level reliability, Negative bias temperature instability, NBTI measurement system, metal-oxide-semiconductor field-effect transistor, MOSFET, NBTI recovery, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16647672 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations
Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang
Abstract:
Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), tert-butyl acrylate (tBA), and methylene-bis-acrylamide (MBA) on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000 nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200 nm to 800 nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in NGH-bearing sediments.
Keywords: Temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317671 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure
Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard
Abstract:
In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.
Keywords: Cavity, natural convection, Nusselt number, wavy wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23587670 Investigation of Constant Transconductance Circuit for Low Power Low-Noise Amplifier
Authors: Wei Yi Lim, M. Annamalai Arasu, M. Kumarasamy Raja, Minkyu Je
Abstract:
In this paper, the design of wide-swing constant transconductance (gm) bias circuit that generates bias voltage for low-noise amplifier (LNA) circuit design by using an off-chip resistor is demonstrated. The overall transconductance (Gm) generated by the constant gm bias circuit is important to maintain the overall gain and noise figure of the LNA circuit. Therefore, investigation is performed to study the variation in Gm with process, temperature and supply voltage (PVT). Temperature and supply voltage are swept from -10 °C to 85 °C and 1.425 V to 1.575 V respectively, while the process conditions are also varied to the extreme and the gm variation is eventually concluded at between -3 % to 7 %. With the slight variation in the gm value, through simulation, at worst condition of state SS, we are able to attain a conversion gain (S21) variation of -3.10 % and a noise figure (NF) variation of 18.71 %. The whole constant gm circuit draws approximately 100 µA from a 1.5V supply and is designed based on 0.13 µm CMOS process.
Keywords: Transconductance, LNA, temperature, process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41307669 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.
Keywords: Combined effect, delayed addition, heat stimulation, flow of mortar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8477668 Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation
Authors: Ag. S. Abd. Hamid, S. K. Lee, J. Dayou, R. Yusoff, F. Sulaiman
Abstract:
The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested.
Keywords: Buoyancy, density, frictional head loss, kinetic power, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18697667 Adaptive Helmholtz Resonator in a Hydraulic System
Authors: Lari Kela
Abstract:
An adaptive Helmholtz resonator was designed and adapted to hydraulics. The resonator was controlled by open- and closed-loop controls so that 20 dB attenuation of the peak-to-peak value of the pulsating pressure was maintained. The closed-loop control was noted to be better, albeit it was slower because of its low pressure and temperature variation, which caused variation in the effective bulk modulus of the hydraulic system. Low-pressure hydraulics contains air, which affects the stiffness of the hydraulics, and temperature variation changes the viscosity of the oil. Thus, an open-loop control loses its efficiency if a condition such as temperature or the amount of air changes after calibration. The instability of the low-pressure hydraulic system reduced the operational frequency range of the Helmholtz resonator when compared with the results of an analytical model. Different dampers for hydraulics are presented. Then analytical models of a hydraulic pipe and a hydraulic pipe with a Helmholtz resonator are presented. The analytical models are based on the wave equation of sound pressure. Finally, control methods and the results of experiments are presented.Keywords: adaptive, damper, hydraulics, pressure, pulsating
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43437666 Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media
Authors: Gajanan Bhat, Vincent Kandagor, Daniel Prather, Ramesh Bhave
Abstract:
Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.
Keywords: Nonwovens, melt blowing, polyehterimide, filter media, microfibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13687665 A Dual Model for Efficiency Evaluation Considering Time Lag Effect
Authors: Yan Shuang Zhang, Taehan Lee, Byung Ho Jeong
Abstract:
A DEA model can generally evaluate the performance using multiple inputs and outputs for the same period. However, it is hard to avoid the production lead time phenomenon some times, such as long-term project or marketing activity. A couple of models have been suggested to capture this time lag issue in the context of DEA. This paper develops a dual-MPO model to deal with time lag effect in evaluating efficiency. A numerical example is also given to show that the proposed model can be used to get efficiency and reference set of inefficient DMUs and to obtain projected target value of input attributes for inefficient DMUs to be efficient.
Keywords: DEA, efficiency, time lag, dual problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809